LA 3263 (平面图的欧拉定理) That Nice Euler Circuit
题意:
平面上有n个端点的一笔画,最后一个端点与第一个端点重合,即所给图案是闭合曲线。求这些线段将平面分成多少部分。
分析:
平面图中欧拉定理:设平面的顶点数、边数和面数分别为V、E和F。则 V+F-E=2
所求结果不容易直接求出,因此我们可以转换成 F=E-V+2
枚举两条边,如果有交点则顶点数+1,并将交点记录下来
所有交点去重(去重前记得排序),如果某个交点在线段上,则边数+1
//#define LOCAL
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; const int maxn = + ; struct Point
{
double x, y;
Point(double x=, double y=) :x(x),y(y) {}
};
typedef Point Vector;
const double EPS = 1e-; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b)
{ return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x)
{ if(fabs(x) < EPS) return ;
else return x < ? - : ; } bool operator == (const Point& a, const Point& b)
{ return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; } double Dot(Vector A, Vector B)
{ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B)
{ return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B)
{ return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C)
{ return Cross(B-A, C-A); } Vector VRotate(Vector A, double rad)
{
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
} Point PRotate(Point A, Point B, double rad)
{
return A + VRotate(B-A, rad);
} Vector Normal(Vector A)
{
double l = Length(A);
return Vector(-A.y/l, A.x/l);
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
{
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v*t;
}
double DistanceToLine(Point P, Point A, Point B)
{
Vector v1 = B - A, v2 = P - A;
return fabs(Cross(v1, v2)) / Length(v1);
} double DistanceToSegment(Point P, Point A, Point B)
{
if(A == B) return Length(P - A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
else if(dcmp(Dot(v1, v3)) > ) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
} Point GetLineProjection(Point P, Point A, Point B)
{
Vector v = B - A;
return A + v * (Dot(v, P - A) / Dot(v, v));
} bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
{
double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1);
double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} bool OnSegment(Point P, Point a1, Point a2)
{
Vector v1 = a1 - P, v2 = a2 - P;
return dcmp(Cross(v1, v2)) == && dcmp(Dot(v1, v2)) < ;
} Point P[maxn], V[maxn*maxn]; int main(void)
{
#ifdef LOCAL
freopen("3263in.txt", "r", stdin);
#endif int n, kase = ;
while(scanf("%d", &n) == && n)
{
for(int i = ; i < n; ++i)
{
scanf("%lf%lf", &P[i].x, &P[i].y);
V[i] = P[i];
}
n--;
int c = n, e = n; for(int i = ; i < n; ++i)
for(int j = i+; j < n; ++j)
if(SegmentProperIntersection(P[i], P[i+], P[j], P[j+]))
V[c++] = GetLineIntersection(P[i], P[i+]-P[i], P[j], P[j+]-P[j]); sort(V, V+c);
c = unique(V, V+c) - V; for(int i = ; i < c; ++i)
for(int j = ; j < n; ++j)
if(OnSegment(V[i], P[j], P[j+])) e++; printf("Case %d: There are %d pieces.\n", ++kase, e+-c);
} return ;
}
代码君
LA 3263 (平面图的欧拉定理) That Nice Euler Circuit的更多相关文章
- LA 3263 That Nice Euler Circuit(欧拉定理)
That Nice Euler Circuit Little Joey invented a scrabble machine that he called Euler, after the grea ...
- UVALive - 3263 That Nice Euler Circuit (几何)
UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给 ...
- UVALi 3263 That Nice Euler Circuit(几何)
That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...
- LA 3263 平面划分
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...
- poj2284 That Nice Euler Circuit(欧拉公式)
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...
- POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)
That Nice Euler Circuit Time Limit: 3000MS M ...
- That Nice Euler Circuit(LA3263+几何)
That Nice Euler Circuit Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu D ...
- poj 2284 That Nice Euler Circuit 解题报告
That Nice Euler Circuit Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 1975 Accepted ...
- ●POJ 2284 That Nice Euler Circuit
题链: http://poj.org/problem?id=2284 题解: 计算几何,平面图的欧拉定理 欧拉定理:设平面图的定点数为v,边数为e,面数为f,则有 v+f-e=2 即 f=e-v+2 ...
随机推荐
- android 自定义ratingbar 图片显示不全的解决方案
在res/style中自定义评分条: <!-- 自定义评分条 --> <style name="roomRatingBar" parent="@andr ...
- Sublime text 取消记住上一次打开的,这功能太墨迹了!
比较恨,这sublime text的配置全部都是配置文件. 选择菜单:Preferences->Settings-User,增加配置项 //热退出,其实实现一种模拟没有退出的状态,当程序再次启动 ...
- Codeforces Round #343 (Div. 2) E. Famil Door and Roads
题目链接: http://www.codeforces.com/contest/629/problem/E 题解: 树形dp. siz[x]为x这颗子树的节点个数(包括x自己) dep[x]表示x这个 ...
- <顶>vim快捷键映射Map使用
问题描述: 使用vim中的快捷键映射map,可以自定义快捷键 问题解决: (1)vim模式 (2)map前缀 (3)删除映射Map (4)使用示例 (5)查看快捷键映射 命令行---:verbose ...
- Linux查看系统基本信息
问题描述: 查看系统基本信息 问题解决: (1)lspci 是一个用来显示系统中所有PCI总线设备或连接到该总线上的所有设备的工具. 用法: lspci -v (1.1) ...
- Log4Net 日志配置[附带源码]
前述 园子里有许多人对log4net这款开源的日志记录控件有很多介绍.在这里个人再做一次总结,希望对以后有所帮助,需要的时候可以直接使用,减少查阅资料的时间.利用log4net可以方便地将日志信息记录 ...
- 首次push本地代码到github上出现的问题及解决方案
刚创建的github版本库,在push代码时出错: $ git push -u origin masterTo git@github.com:******/Demo.git ! [rejected] ...
- 【WCF--初入江湖】11 安全
11 安全 前言 [1]传输安全 传输安全模式 传输安全与绑定协议 [2]身份验证 身份验证分类 证书 示例:传输安全匿名客户端证书的使用 1. 传输安全 保证信息在传输过程中的 ...
- Google 网站打不开
http://209.116.186.246/ http://91.213.30.153/ (2014年6月30日 新增) https://wen.lu/ (2014年6月30日 新增,注意下是ht ...
- log4j使用感受
1.为什么使用日志? 日志可以记录项目中的重要信息,关键输出信息,异常信息,为项目上线后期维护提供方便,在项目开发中尽量养成习惯写日志,而不是System.out.println()打印,不过在jun ...