题意:

平面上有n个端点的一笔画,最后一个端点与第一个端点重合,即所给图案是闭合曲线。求这些线段将平面分成多少部分。

分析:

平面图中欧拉定理:设平面的顶点数、边数和面数分别为V、E和F。则 V+F-E=2

所求结果不容易直接求出,因此我们可以转换成 F=E-V+2

枚举两条边,如果有交点则顶点数+1,并将交点记录下来

所有交点去重(去重前记得排序),如果某个交点在线段上,则边数+1

 //#define LOCAL
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; const int maxn = + ; struct Point
{
double x, y;
Point(double x=, double y=) :x(x),y(y) {}
};
typedef Point Vector;
const double EPS = 1e-; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b)
{ return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x)
{ if(fabs(x) < EPS) return ;
else return x < ? - : ; } bool operator == (const Point& a, const Point& b)
{ return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; } double Dot(Vector A, Vector B)
{ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B)
{ return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B)
{ return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C)
{ return Cross(B-A, C-A); } Vector VRotate(Vector A, double rad)
{
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
} Point PRotate(Point A, Point B, double rad)
{
return A + VRotate(B-A, rad);
} Vector Normal(Vector A)
{
double l = Length(A);
return Vector(-A.y/l, A.x/l);
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
{
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v*t;
}
double DistanceToLine(Point P, Point A, Point B)
{
Vector v1 = B - A, v2 = P - A;
return fabs(Cross(v1, v2)) / Length(v1);
} double DistanceToSegment(Point P, Point A, Point B)
{
if(A == B) return Length(P - A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
else if(dcmp(Dot(v1, v3)) > ) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
} Point GetLineProjection(Point P, Point A, Point B)
{
Vector v = B - A;
return A + v * (Dot(v, P - A) / Dot(v, v));
} bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
{
double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1);
double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} bool OnSegment(Point P, Point a1, Point a2)
{
Vector v1 = a1 - P, v2 = a2 - P;
return dcmp(Cross(v1, v2)) == && dcmp(Dot(v1, v2)) < ;
} Point P[maxn], V[maxn*maxn]; int main(void)
{
#ifdef LOCAL
freopen("3263in.txt", "r", stdin);
#endif int n, kase = ;
while(scanf("%d", &n) == && n)
{
for(int i = ; i < n; ++i)
{
scanf("%lf%lf", &P[i].x, &P[i].y);
V[i] = P[i];
}
n--;
int c = n, e = n; for(int i = ; i < n; ++i)
for(int j = i+; j < n; ++j)
if(SegmentProperIntersection(P[i], P[i+], P[j], P[j+]))
V[c++] = GetLineIntersection(P[i], P[i+]-P[i], P[j], P[j+]-P[j]); sort(V, V+c);
c = unique(V, V+c) - V; for(int i = ; i < c; ++i)
for(int j = ; j < n; ++j)
if(OnSegment(V[i], P[j], P[j+])) e++; printf("Case %d: There are %d pieces.\n", ++kase, e+-c);
} return ;
}

代码君

LA 3263 (平面图的欧拉定理) That Nice Euler Circuit的更多相关文章

  1. LA 3263 That Nice Euler Circuit(欧拉定理)

    That Nice Euler Circuit Little Joey invented a scrabble machine that he called Euler, after the grea ...

  2. UVALive - 3263 That Nice Euler Circuit (几何)

    UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址:  UVALive - 3263 That Nice Euler Circuit 题意:  给 ...

  3. UVALi 3263 That Nice Euler Circuit(几何)

    That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...

  4. LA 3263 平面划分

    Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...

  5. poj2284 That Nice Euler Circuit(欧拉公式)

    题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...

  6. POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

                                                          That Nice Euler Circuit Time Limit: 3000MS   M ...

  7. That Nice Euler Circuit(LA3263+几何)

    That Nice Euler Circuit Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu D ...

  8. poj 2284 That Nice Euler Circuit 解题报告

    That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1975   Accepted ...

  9. ●POJ 2284 That Nice Euler Circuit

    题链: http://poj.org/problem?id=2284 题解: 计算几何,平面图的欧拉定理 欧拉定理:设平面图的定点数为v,边数为e,面数为f,则有 v+f-e=2 即 f=e-v+2 ...

随机推荐

  1. Getting Started with Java

    “学前”说明:<Learn Java for Android>这本书内容很多,都是精华,建议大家看英文版的.在这里我不打算一一总结书中的内容,书中每章节后面的exercises都很好,非常 ...

  2. CSS进阶

    盒子模型的边框就是围绕着内容及补白的线,这条线你可以设置它的粗细.样式和颜色(边框三个属性). 1.border-style(边框样式)常见样式有:dashed(虚线)| dotted(点线)| so ...

  3. 【BZOJ】【1051】【HAOI2005】受欢迎的牛

    按B->A连边,tarjan缩点,然后找入度为0的连通分量,如果有1个,则ans=size[i],如果大于一个则ans=0: 当然如果按A->B连边就是找出度为0的(表示没有被它喜欢的,这 ...

  4. java基础知识回顾之javaIO类--java序列化和反序列化

    /** *  * 一:理解序列化反序列化及其应用 * 序列化:把堆内存的对象转化成字节流的过程. * 反序列化:把字节流序列恢复重构成对象的过程. * 对象的序列化的用途:1.把对象的字节序列持久化, ...

  5. POJ1276Cash Machine

    http://poj.org/problem?id=1276 题意 : 给你一个目标钱数,再给你钱币的种数和钱币的面值,让你用这些钱凑出不大于目标钱数的钱然后输出这个最接近且不大于目标钱数的钱. 思路 ...

  6. 使用 C# 对文件进行压缩和解压

    C#中对文件压缩和可以使用两个类: GZipStream 类 此实例分为几个模块,分别为: 压缩函数: /// <summary> /// 压缩文件 /// </summary> ...

  7. 01 - 编译链接第一个wxWidgets3.0例子

    1. preprocessor #define __WXMSW__#define WXUSINGDLL 2. vc10中设置Include dir, lib dir, dll path VC++平台编 ...

  8. DIV+CSS列表式布局(同意图片的应用)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. My_Plan part1 小结

    数位DP AC十道题目以上 成就达成 八月份!三个月!想想就令人兴奋呢 开始写总结啦 貌似简单的数位DP只需要改改模板就可以啦 就按照我的做题顺序开始总结吧 先是学习了一发模板:http://www. ...

  10. ADO,OLEDB,ODBC,DAO的区别

    ADO NET OLEDB ODBC连接数据库的区别 http://www.doc88.com/p-976312043296.html http://blog.csdn.net/ithomer/art ...