uva 12524

题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi;

问把n个点的东西合并成k个的最小花费;

分析:设dp[j][i]表示把前i个点的东西合并成j个点的最小花费,那么dp[j][i] = min( dp[j-1][k] + w[k+1]*(x[i] - x[k+1]) + w[k+2]*(x[i] - x[k+2]) + ... + w[i] * (x[i] - x[i]));

设sw[i] = w[1] + w[2] + ...+w[i];

swx[i] = w[1]*x[1] + w[2]*x[2] + ... + w[i]*x[i];

那么 dp[j][i] = min( dp[j-1][k] + x[i] * (sw[i] - sw[k]) - (swx[i] - swx[k]) , 0<k<i );

显然dp[j][i] = -x[i] * sw[k] + swx[k] + dp[j-1][k] + x[i] * sw[i] - swx[i];

斜率为 x[i];

x = sw[k];  y = swx[k] + dp[j-1][k];然后套模板;

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<set>
#include<map>
#include<queue>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define pbk push_back
#define mk make_pair
using namespace std;
typedef long long LL;
const int N = +;
const double eps = 1e-;
inline int dcmp(double x) {
return x < -eps ? - : x > eps;
}
LL x[N],sw[N],swx[N],w[N];
int n,k;
LL dp[N][N];
struct Point{
LL x,y;
Point (LL x = , LL y = ):x(x),y(y){}
Point operator - (const Point &p)const{
return Point(x - p.x, y - p.y);
}
LL operator * (const Point &p)const{
return x * p.y - y * p.x;
}
};
struct dequeue{
int head,tail;
Point q[N];
void init(){
head = ; tail = ;
}
void push(const Point &u){
while (head < tail && (q[tail] - q[tail - ]) * (u - q[tail - ]) <= ) tail--;
q[++tail] = u;
}
Point pop(const LL &k) {
while (head < tail && k*q[head].x + q[head].y >= k*q[head+].x + q[head+].y) head++;
return q[head];
}
}H;
void solve(){
sw[] = swx[] = ;
for (int i = ; i <= n; i++) {
sw[i] = sw[i-] + w[i];
swx[i] = swx[i-] + w[i]*x[i];
}
memset(dp,,sizeof(dp));
for (int i = ; i <= n; i++) {
dp[][i] = x[i]*sw[i] - swx[i];
}
for (int j = ; j <= k; j++){
H.init(); H.push(Point(sw[j-],swx[j-] + dp[j-][j-]));
for (int i = j; i <= n; i++) {
Point p = H.pop(-x[i]);
dp[j][i] = x[i]*sw[i] - swx[i] - x[i] * p.x + p.y;
H.push(Point(sw[i],swx[i] + dp[j-][i]));
}
}
printf("%lld\n",dp[k][n]); }
int main(){
while (~scanf("%d%d",&n,&k)) {
for (int i = ; i <= n; i++) {
scanf("%lld%lld",&x[i],&w[i]);
}
solve();
}
return ;
}

cf319C

http://codeforces.com/contest/319/problem/C

 /*
题意:有n课树要砍,每次只能砍1个单位的长度,每次砍完后都要花费已经砍完的id最大的树的bi时间充电,a1 = 1;
并且 bn = 0; 问最少花多少时间把树砍完; 设DP[i]表示使当前已经砍完的树的最大ID是i的最小花费
方程:DP[i] = DP[j] + b[j] + (a[i]-1)*b[j]; //最后一棵树只需要a[i]-1次,第一b[j]表示补上上一棵树的最后一次; 然后就是标准的斜率DP;
DP[i] = DP[j] + a[i]*b[j];
设 b[j] = x[j]; DP[j] = y[j];
G = a[i]*x[j]+y[j];
因为x[j]是单调递减的,y[j]是单调递增的,a[i]是单调递增的;
所以满足条件;
套一下模板就好; trick: 在做Cross()时会爆LL,然后又因为我那样写u.x,v.x都是负数,移项要变符号,
然后太懒,没有自己造例子,样例一直可以跑出,花了一个晚上找BUG,教训啊!! */
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;
const int N=+;
struct Point{
LL x,y;
Point (LL a=,LL b=):x(a),y(b){}
Point operator - (const Point &p)const{
return Point(x-p.x,y-p.y);
}
};
const double eps = 1e-;
int dcmp(double x){
return x < -eps ? - : x > eps;
}
LL Cross(const Point &u,const Point &v){
if (dcmp(u.x*1.0/v.x - u.y*1.0/v.y) <= ) return ;
return -;
}
Point q[N];
int head,tail;
void init(){
head = ; tail = ;
}
void push(const Point &u){
while (head < tail && Cross(q[tail]-q[tail-], u-q[tail-]) >= ) tail--;
q[++tail] = u;
}
void pop(const LL &k){
while (head < tail && k*q[head].x + q[head].y >= k*q[head+].x + q[head+].y ) head++;
}
int n;
LL a[N],b[N];
LL dp[N];
void solve(){
init();
dp[] = ; push(Point(b[],));
for (int i = ; i <= n; i++) {
pop(a[i]);
dp[i] = a[i] * q[head].x + q[head].y;
push(Point(b[i],dp[i]));
}
printf("%I64d\n",dp[n]);
}
int main(){
freopen("in.txt","r",stdin);
while (~scanf("%d",&n)){
for (int i = ; i <= n; i++) {
scanf("%I64d",a+i);
}
for (int i = ; i <=n; i++) {
scanf("%I64d",b+i);
}
solve(); }
return ;
}

cf311 B

http://codeforces.com/contest/311/problem/B

 /*
题意:有直线上n个地点,m只cat,p个喂养人,cat会在ti到达hi,喂养人从地点1
任意时间出发,如果碰到已经到达的CAT就照顾,问怎么安排喂养人
使所有CAT被照顾到且,cat等待的时间最少; sum_di[i]表示 地点i到地点1的距离,那么 val[j] = ti[j] - sum_di[hi[j]就表示对cat j
喂养人最早的出发时间;
sort(val); 那么题意就是讲val[]至多分成p段,每段的花费为:
设该段为[i,j],w = val[j]*(j-i+1)- (sum[j] - sum[j-1]); 设DP[j][i]表示 前i个值分成j段的最小花费
方程:DP[j][i] = DP[j-1][k] + val[i]*(i-k) - (sum[i]-sum[k]);
很明显可以化成斜率的DP的模式;
x[k] = k;
y[k] = sum[k] + dp[k];
G = -a[i]*x[k] + y[k]; trick :人出发的时间可以是负的,
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=+;
typedef long long LL;
struct Point{
LL x,y;
Point (LL a=,LL b=):x(a),y(b){}
Point operator - (const Point &p)const{
return Point (x-p.x, y-p.y);
}
};
LL Cross(const Point &u,const Point &v){
return u.x*v.y - u.y*v.x;
} Point q[N];
int head,tail;
void init(){
head = ; tail = ;
}
void push(const Point &u){
while (head < tail && Cross(q[tail]-q[tail-],u-q[tail-]) <= ) tail--;
q[++tail] = u;
}
void pop(const LL &k){
while (head < tail && k*q[head].x + q[head].y >= k*q[head+].x+q[head+].y) head++;
}
int n,m,p;
LL di[N],sum_di[N];
LL sum[N],hi[N],ti[N],val[N];
void init_val(){
for (int i = ; i<=m ;i++){
val[i] = ti[i] - sum_di[hi[i]];
}
sort(val+,val+m+);
sum[] = ;
for (int i = ; i<=m; i++) {
sum[i] = sum[i-] + val[i];
}
/* for (int i =1; i<=m; i++) {
cout << val[i] << " ";
}cout<<endl;
*/
}
LL dp[][N];
void solve(){
init_val();
for (int i = ; i <= m; i++) {
dp[][i] = val[i]*i - sum[i];
}
LL ret = dp[][m];
for (int j = ; j<=p; j++) {
init();
for (int i = ; i <= m; i++) {
pop(-val[i]);
dp[j][i] = -val[i]*q[head].x + q[head].y - sum[i] + val[i]*i;
push(Point(i,dp[j-][i] + sum[i])); }
if (dp[j][m] < ret) ret = dp[j][m];
}
printf("%I64d\n",ret);
}
int main(){
freopen("in.txt","r",stdin);
while (~scanf("%d%d%d",&n,&m,&p)){
for (int i = ; i <= n ;i++) scanf("%I64d",di+i);
sum_di[] = sum_di[] = ;
for (int i = ; i <= n; i++) sum_di[i] = sum_di[i-] + di[i];
for (int i= ; i <= m; i++) scanf("%I64d%I64d",hi+i,ti+i);
solve();
}
return ;
}

hdu 3669

 /*
题意:n个A矩形,至多在墙上挖M个B矩形,每个B矩形的花费是矩形的面积,且每个B矩形不能重叠,
使所有A矩形都能通过,(A矩形不能旋转),问最小的花费; 按照wi从大到小,如果wi相等,则按hi从大到小排,这样对于wi相同的矩形,只要hi最高的能通过,其他
的肯定能通过,这样可以预处理出必要的矩形; 这样问题就变成,给你wi递减,hi递增的矩形序列,至多分成M段,没段的花费为
w[i,j] = mat[i].wi*mat[j].hi; 设DP[j][i]表示将前i个矩形划分成j段的最小花费;
DP[j][i] = DP[j-1][k] + w[k,i]; 很标准的斜率DP; 注意: 常数很大,写在结构体里就T了,还有就是能不用LL的就不要用LL,
用LL的常数也很大,
还有就是一个可以”优化“的,就是if dp[j][n] > ret then break; 标记为“>.<”的那行;
但是不知道是不是对的
*/
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
using namespace std;
const int N=+;
typedef long long LL;
struct Point{
int x;
LL y;
Point (int a=,LL b=):x(a),y(b){}
Point operator - (const Point &p) const{
return Point(x-p.x,y-p.y);
}
};
typedef Point Vector;
inline LL Cross(const Vector &u,const Vector &v){
return (LL)u.x*v.y - (LL)u.y*v.x;
}
struct rec{
int w,h;
bool operator < (const rec &p)const{
return w>p.w || (w==p.w && h>p.h);
}
}mat[N];
int n,M;
Point q[N];
int head,tail;
/*
struct dequeue{
Point q[N];
int head,tail;
void init(){
head = 1; tail = 0;
}
void push(const Point &u){
while (head < tail && Cross(q[tail]-q[tail-1],u-q[tail-1]) >= 0 ) tail--;
q[++tail] = u;
}
Point pop(const LL &k){
while (head < tail && k*q[head].x + q[head].y >= k*q[head+1].x + q[head+1].y ) head++;
return q[head];
}
}H;
*/
LL dp[][N];
void solve(){ sort(mat+,mat+n+);
int tn=;
for (int i=;i<=n;i++){
if (mat[tn].w!=mat[i].w && mat[tn].h < mat[i].h) mat[++tn] = mat[i];
}
n = tn; LL ret = -;
int pos=;
dp[pos][] = ;
for (int i=;i<=n;i++){
dp[pos][i]=(LL)mat[].w*mat[i].h;
}
ret = dp[pos][n];
for (int j=;j<=M;j++){
head = ; tail = ;
for (int i=;i<=n;i++){
Point u=Point(mat[i].w,dp[pos][i-]);
while (head < tail && Cross(q[tail]-q[tail-],u-q[tail-]) >= ) tail--;
q[++tail] = u;
while (head < tail && (LL)q[head].x*mat[i].h + q[head].y >= (LL)q[head+].x*mat[i].h + q[head+].y )
head++; dp[pos^][i] = (LL)q[head].x*mat[i].h + q[head].y;
} pos ^= ; dp[pos][] = ;
if (dp[pos][n] < ret) ret = dp[pos][n];
//else break; >.<
}
printf("%I64d\n",ret);
}
int main(){
//freopen("in.txt","r",stdin);
while (~scanf("%d%d",&n,&M)){
for (int i=;i<=n;i++){
scanf("%d%d",&mat[i].w,&mat[i].h);
}
solve();
}
return ;
}

hdu 3725

 /*
题意:happy Farm,偷菜,且只能按照价值从大到小开始偷(一般斜率DP都是这样,有一定的顺序,然后就是分段了)
每个蔬菜有两个值ai,di,可以刷新M次,每次刷新后DOG的anger值变成0; 抽象一下:给你一个序列,至多分成M段,每段的花费是w[i,j];
在花费小于ti的情况下,使每段sum_di的最大值最小; w[i+1,j] = a[i+1]*1 + a[i+2]*2 + ... + a[j]*(j-i+1); 最大值最小,很容易让人想到二分最大值m,然后判断是否满足; 现在问题变成:每段sum_di的值不超过m,问是否存在方案使得花费小于ti; Ti[i] = a[1]*1 + a[2]*2 + ... + a[i]*i;
sum[i] = a[1] + a[2] + ... + a[i];
w[i+1,j] = Ti[j] - Ti[i] - sum[i]*(j-i); dp[j][i]表前i个蔬菜,分成j段,每段sum_di满足要求下的最小花费;
dp[j[i] = dp[j-1][k] + w[k,i]; 显然也是一个斜率DP模型; 因为每段加了一个sum_di不能超过m的要求,所以在POP时还要POP掉不能满足条件的点
这就有可能H.q[]里一个点也没有,anger[i]本身大于m,所以我们在操作时要判断一下,
同样在PUSH时也是,不需要把那些不满足的点push进去; 初始化,和队列的边界问题我想是写斜率DP的唯一要注意一下的地方; */
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<vector>
#include<string>
using namespace std;
const int N=+;
typedef long long LL;
struct Point{
LL x,y;
Point (LL a=,LL b=):x(a),y(b){}
Point operator - (const Point &p)const{
return Point(x - p.x, y - p.y);
}
};
LL sum[N],Ti[N],ti;
int n,M,r,anger[N];
typedef Point Vector;
LL Cross(const Vector &u,const Vector &v){
return u.x*v.y - u.y*v.x;
}
struct dequeue{
Point q[N];
int head,tail;
void init(){
head = ; tail = ;
}
void push(const Point &u){
while (head < tail && Cross(q[tail] - q[tail-],u - q[tail-]) <= )
tail--;
q[++tail] = u;
}
void pop(int k,int i,int w){
while (head <= tail && anger[i] - anger[q[head].x] > w) head++;
while (head < tail && -k*q[head].x + q[head].y >= -k*q[head+].x + q[head+].y) head++; }
}H; struct vegetable{
int vi,ai;
LL di;
vegetable(int v=,int a=,LL d=):vi(v),ai(a),di(d){}
bool operator < (const vegetable &p)const{
return vi>p.vi;
}
void input(){
scanf("%d%d%I64d",&vi,&ai,&di);
}
void output(){
cout<< vi <<" "<< ai <<" "<< di << endl;
} }vg[N]; void init(){
sort(vg+,vg+n+);
anger[] = sum[] = Ti[] = ;
for (int i=;i<=n;i++) {
sum[i]=sum[i-]+vg[i].di;
Ti[i]=Ti[i-]+i*vg[i].di;
anger[i] = anger[i-] + vg[i].ai;
}
/*
for (int i=0;i<=n;i++) cout<<sum[i]<<" ";cout<<endl;
for (int i=0;i<=n;i++) cout<<Ti[i]<<" ";cout<<endl;
for (int i=0;i<=n;i++) cout<<anger[i]<<" ";cout<<endl;
*/
}
LL dp[][N];
int check(int m){
for (int i = ; i <= M; i++){
for (int j = ; j <= n; j++) dp[i][j] = -;
}
for (int i=;i<=n;i++){
if (anger[i] <= m) dp[][i]=Ti[i];
else break;
}
for (int j=;j<=M;j++){ H.init();
H.push(Point(,(j-)*r)); for (int i=;i<=n;i++){
H.pop(sum[i],i,m);
if (H.head<=H.tail)
dp[j][i] = -sum[i]*H.q[H.head].x + H.q[H.head].y + Ti[i] + r;
//cout<< t.x << " " << t.y << " *** " <<dp[j][i]<< endl;
if (dp[j-][i] != -) H.push(Point(i,sum[i]*i + dp[j-][i] - Ti[i])); }
}
LL ret = dp[][n];
for (int i=; i<=M;i++){
if(dp[i][n] < ret || ret == -) ret = dp[i][n];
}
if (ret > ti || ret == -) return ;
return ;
}
void solve(int l,int r){
init();
int ret=-;
while (r>=l){
int m=(l+r)>>;
if (check(m)){
ret=m; r=m-;
}else l=m+;
}
if (ret == -) printf("I have no idea\n");
else printf("%d\n",ret);
}
int main(){ freopen("in.txt","r",stdin);
int T; scanf("%d",&T);
while (T--){
scanf("%d%d%d%I64d",&n,&M,&r,&ti);
int allai = ;
for (int i=;i<=n;i++){
vg[i].input();
allai += vg[i].ai;
}
solve(,allai);
}
return ;
}

斜率DP题目的更多相关文章

  1. 斜率DP个人理解

    斜率DP 斜率DP的一版模式:给你一个序列,至多或分成m段,每段有花费和限制,问符合情况的最小花费是多少: 一版都用到sum[],所以符合单调,然后就可以用斜率优化了,很模板的东西: 如果看不懂可以先 ...

  2. bzoj4518: [Sdoi2016]征途--斜率DP

    题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...

  3. DP题目列表/弟屁专题

    声明: 1.这份列表不是我原创的,放到这里便于自己浏览和查找题目. ※最近更新:Poj斜率优化题目 1180,2018,3709 列表一:经典题目题号:容易: 1018, 1050, 1083, 10 ...

  4. HDU 3480 - Division - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  5. POJ 1180 - Batch Scheduling - [斜率DP]

    题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...

  6. HDU 2829 - Lawrence - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...

  7. HDU 2993 - MAX Average Problem - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 Consider a simple sequence which only contains p ...

  8. HDU 3045 picnic cows(斜率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045 题目大意:有n个数,可以把n个数分成若干组,每组不得小于m个数,每组的价值=除了该组最小值以外每 ...

  9. HDU 3669 Cross the Wall(斜率DP+预处理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3669 题目大意:有n(n<=50000)个矩形,每个矩形都有高和宽,你可以在墙上最多挖k个洞使得 ...

随机推荐

  1. [Codeforces673C]Bear and Colors(枚举,暴力)

    题目链接:http://codeforces.com/contest/673/problem/C 题意:给一串数,不同大小的区间内出现次数最多的那个数在计数的时候会+1,问所有区间都这样计一次数,所有 ...

  2. [HDOJ2818]Building Block(带权并查集,路径压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2818 题意:有N个块,每次有两个操作: M x y表示把x所在的那一堆全部移到y所在的那一堆的下方. ...

  3. chrome控制台小技巧

    对于大多数开发人员来说,chrome控制台最常用的命令就是 console.log()了,然后还有一些其他类似的命令,如: console.info()   提示信息 console.error() ...

  4. UVA 820 Internet Bandwidth 因特网宽带(无向图,最大流,常规)

    题意:给一个无向图,每条边上都有容量的限制,要求求出给定起点和终点的最大流. 思路:每条无向边就得拆成2条,每条还得有反向边,所以共4条.源点汇点已经给出,所以不用建了.直接在图上跑最大流就可以了. ...

  5. noip2005提高组题解

    05年的题目绝对是自2000年以来难度最大的.后三题的难度系数分别为0.2.0.2.0.3,而前面几年的题目中每年最多只出现一道难度系数为0.2的题目,其难度可见一斑. 强烈推荐这个 PPT,每道题都 ...

  6. 《C++ Primer 4th》读书笔记 第8章-标准IO库

    原创文章,转载请注明出处:http://www.cnblogs.com/DayByDay/p/3936457.html

  7. liunx下mysql数据库使用之三范式,关系模型设计注意项,安装目录结构

    数据库的三范式第一范式===>每行记录的属性,是原子的,拆到不可拆为止.===>例如:一个人的籍贯,可以拆分为,省,市,县,乡,村 第二范式===>每行记录的非主属性(非主键属性), ...

  8. 【DFS/BFS】NYOJ-58-最少步数(迷宫最短路径问题)

    [题目链接:NYOJ-58] 经典的搜索问题,想必这题用广搜的会比较多,所以我首先使的也是广搜,但其实深搜同样也是可以的. 不考虑剪枝的话,两种方法实践消耗相同,但是深搜相比广搜内存低一点. 我想,因 ...

  9. Oracle 课程八之跟踪事件set event

    一.Oracle跟踪文件 Oracle跟踪文件分为三种类型: 一种是后台报警日志文件,记录数据库在启动.关闭和运行期间后台进程的活动情况,如表空间创建.回滚段创建.某些alter命令.日志切换.错误消 ...

  10. WebView 中重写javascript 常用函数

    常规函数   javascript 常规函数包括以下3个函数:  (1)alert函数:显示一个警告对话框,包括一个OK按钮. 对应:http://www.dreamdu.com/javascript ...