World is Exploding

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5792

Description


Given a sequence A with length n,count how many quadruple (a,b,c,d) satisfies: a≠b≠c≠d,1≤a Ad.

##Input

The input consists of multiple test cases.
Each test case begin with an integer n in a single line.
The next line contains n integers A1,A2⋯An.
1≤n≤50000
0≤Ai≤1e9

##Output

For each test case,output a line contains an integer.

##Sample Input

4
2 4 1 3
4
1 2 3 4

##Sample Output

1
0

##Source

2016 Multi-University Training Contest 5


##题意:

找出有多少个四元组(a,b,c,d)满足a≠b≠c≠d,a Ad.


##题解:

下面将题意中的Aa Ad称为降序对.
首先会想到如果没有a≠b≠c≠d的限制,那么可以分别找到所有升序对和降序对数目相乘. 所以在有a≠b≠c≠d限制的情况下,需要考虑去重.
枚举元素num[i],考虑以num[i]为升序对右边界的情况:
1. 以num[i]为右边界的升序对个数为:1~i-1中比i小的个数.
2. 降序对:所有降序对 - 包含升序对中元素的降序对.
3. 包含升序对中元素的降序对:Sum((右边比num[j]小 + 左边比num[j]大) + (右边比num[i]小 + 左边比num[i]大)). (j为1~i-1中比num[i]小的数).

接下来的任务是:求出任一数左边比它大、小,右边比它大、小的数的个数各是多少.
这里可以用求逆序数的方法来求. 先将数据离散化.
注意TLE:尽量使用一次树状数组或线段树操作(O(nlogn)) + 多个O(n)的遍历来求得上述四个数组.
若分别使用2次甚至更多次的的线段树操作,将会由于常数太大而TLE(TLE代码附后,使用三次线段树操作).

分别使用left_large,left_small,right_small,right_large来表示上述的四个量. all_less为全部降序对数.
那么结果为:
left_small[i] * all_less - Σ(left_large[i]+right_small[i], left_large[j]+right_small[j]); (其中j为i左边比num[i]小的数,其个数为left_small[i]).
优化:若是直接用上述式子来求,则要再维护一次树状数组求比num[i]小的数的所涉及的重复降序对.
实际上,对于每个num[i],在减号右边left_large[i]+right_small[i]被计数的次数应该是i的右边比num[i]大的数的个数.
所以上式可优化为代码所示的式子:(总共仅需一次树状数组操作)
ans += left_small[i] * (all_less - left_large[i] - right_small[i]);
ans -= right_large[i] * (left_large[i] + right_small[i]);


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define mid(a,b) ((a+b)>>1)
#define eps 1e-8
#define maxn 55000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

int n;

LL num[maxn], tmpa[maxn];

LL c[maxn];

LL left_large[maxn], left_small[maxn];

LL right_small[maxn], right_large[maxn];

LL tol_cnt[maxn], tol_small[maxn], tol_large[maxn];

LL lowbit(LL x) {

return x & (-x);

}

void update(LL x, LL d) {

while(x <=n) {

c[x] += d;

x += lowbit(x);

}

}

LL get_sum(LL x) {

LL ret = 0;

while(x > 0) {

ret += c[x];

x -= lowbit(x);

}

return ret;

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d", &n) != EOF)
{
for(int i=1; i<=n; i++)
scanf("%d", &num[i]), tmpa[i] = num[i];
sort(tmpa+1, tmpa+1+n); map<LL, LL> mymap;
LL sz = 0; mymap.clear();
for(int i=1; i<=n; i++) {
if(!mymap.count(tmpa[i])) {
sz++;
mymap.insert(make_pair(tmpa[i], sz));
}
} for(int i=1; i<=n; i++) {
num[i] = mymap[num[i]];
} memset(left_large, 0, sizeof(left_large));
memset(right_large, 0, sizeof(right_large));
memset(right_small, 0, sizeof(right_small));
memset(left_small, 0, sizeof(left_small));
memset(tol_small, 0, sizeof(tol_small));
memset(tol_large, 0, sizeof(tol_large));
memset(tol_cnt, 0, sizeof(tol_cnt));
memset(c, 0, sizeof(c)); for(int i=1; i<=n; i++) {
tol_cnt[num[i]]++;
}
for(int i=1; i<=sz; i++) {
tol_small[i] = tol_small[i-1] + tol_cnt[i-1];
}
for(int i=sz; i>=1; i--) {
tol_large[i] = tol_large[i+1] + tol_cnt[i+1];
} LL all_less = 0;
for(int i=1; i<=n; i++) {
left_large[i] = get_sum(sz) - get_sum(num[i]);
right_large[i] = tol_large[num[i]] - left_large[i]; left_small[i] = get_sum(num[i]-1);
right_small[i] = tol_small[num[i]] - left_small[i]; all_less += right_small[i]; update(num[i], 1);
} LL ans = 0;
for(int i=1; i<=n; i++) {
ans += left_small[i] * (all_less - left_large[i] - right_small[i]);
ans -= right_large[i] * (left_large[i] + right_small[i]);
} printf("%I64d\n", ans);
} return 0;

}


####TLE代码:(三次线段树操作)
``` cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define mid(a,b) ((a+b)>>1)
#define eps 1e-8
#define maxn 55000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int n;
LL num[maxn], tmpa[maxn];
LL pre[maxn];
LL last[maxn]; struct Tree
{
int left,right;
LL cur;
LL sum;
}tree[maxn<<2]; void build(int i,int left,int right)
{
tree[i].left=left;
tree[i].right=right; if(left==right){
tree[i].sum = 0;
tree[i].cur = 0;
return ;
} int mid=mid(left,right); build(i<<1,left,mid);
build(i<<1|1,mid+1,right); tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
tree[i].cur=tree[i<<1].cur+tree[i<<1|1].cur;
} void update(int i,int x,LL d)
{
if(tree[i].left==tree[i].right){
tree[i].sum+=1;
tree[i].cur+=d;
return;
} int mid=mid(tree[i].left,tree[i].right); if(x<=mid) update(i<<1,x,d);
else update(i<<1|1,x,d); tree[i].sum=tree[i<<1].sum+tree[i<<1|1].sum;
tree[i].cur=tree[i<<1].cur+tree[i<<1|1].cur;
} LL query(int i,int left,int right)
{
if(tree[i].left==left&&tree[i].right==right)
return tree[i].sum; int mid=mid(tree[i].left,tree[i].right); if(right<=mid) return query(i<<1,left,right);
else if(left>mid) return query(i<<1|1,left,right);
else return query(i<<1,left,mid)+query(i<<1|1,mid+1,right);
} LL query2(int i,int left,int right)
{
if(tree[i].left==left&&tree[i].right==right)
return tree[i].cur; int mid=mid(tree[i].left,tree[i].right); if(right<=mid) return query2(i<<1,left,right);
else if(left>mid) return query2(i<<1|1,left,right);
else return query2(i<<1,left,mid)+query2(i<<1|1,mid+1,right);
} map<LL, LL> mymap; int main(int argc, char const *argv[])
{
//IN; while(scanf("%d", &n) != EOF)
{
for(int i=1; i<=n; i++)
scanf("%d", &num[i]), tmpa[i] = num[i];
sort(tmpa+1, tmpa+1+n); LL sz = 0; mymap.clear();
for(int i=1; i<=n; i++) {
if(!mymap.count(tmpa[i])) {
sz++;
mymap.insert(make_pair(tmpa[i], sz));
}
} for(int i=1; i<=n; i++) {
num[i] = mymap[num[i]];
} fill(pre, pre+n+1, 0);
fill(last, last+n+1, 0); build(1, 1, sz);
for(int i=1; i<=n; i++) {
update(1, num[i], 1);
if(num[i] == sz) continue;
pre[i] = query(1, num[i]+1, sz);
}
build(1, 1, sz);
for(int i=n; i>=1; i--) {
update(1, num[i], 1);
if(num[i] == 1) continue;
last[i] = query(1, 1, num[i]-1);
} LL all_less = 0;
for(int i=1; i<=n; i++) {
all_less += last[i];
} build(1, 1, sz);
LL ans = 0;
for(int i=1; i<=n; i++) {
update(1, num[i], pre[i]+last[i]);
if(num[i] == 1) continue;
LL pre_num = query(1, 1, num[i]-1);
LL pre_sum = query2(1, 1, num[i]-1); ans += pre_num * (all_less - pre[i] - last[i]) - pre_sum;
} printf("%I64d\n", ans);
} return 0;
}

HDU 5792 World is Exploding (树状数组)的更多相关文章

  1. HDU 5792 World is Exploding 树状数组+枚举

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5792 World is Exploding Time Limit: 2000/1000 MS (Ja ...

  2. hdu 5792 World is Exploding 树状数组

    World is Exploding 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5792 Description Given a sequence ...

  3. hdu 5792 World is Exploding 树状数组+离散化+容斥

    World is Exploding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  4. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  5. hdu 5517 Triple(二维树状数组)

    Triple Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  6. 2016 Multi-University Training Contest 5 1012 World is Exploding 树状数组+离线化

    http://acm.hdu.edu.cn/showproblem.php?pid=5792 1012 World is Exploding 题意:选四个数,满足a<b and A[a]< ...

  7. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  8. HDU 5862 Counting Intersections (树状数组)

    Counting Intersections 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Description Given ...

  9. hdu 5592 ZYB's Game 树状数组

    ZYB's Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=55 ...

  10. HDU 1394 Minimum Inversion Number (树状数组求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题目让你求一个数组,这个数组可以不断把最前面的元素移到最后,让你求其中某个数组中的逆序对最小是多 ...

随机推荐

  1. Effective C++学习笔记 条款05:了解C++默默编写并调用的哪些函数

    一.如果用户没有提供构造函数.copy构造函数.copy assignment操作符和析构函数,当且仅当这些函数被需要的时候,编译器才会帮你创建出来.编译器生成的这些函数都是public且inline ...

  2. bzoj2792

    首先想到二分答案是吧,设为lim 这道题难在判定,我们先不管将一个数变为0的条件 先使序列满足相邻差<=lim,这个正着扫一遍反着扫一遍即可 然后我们就要处理将一个数变为0的修改代价 当i变为0 ...

  3. java实现DES算法

    import java.util.UUID; import javax.crypto.Cipher; import javax.crypto.SecretKey; import javax.crypt ...

  4. SharePoint CMAL方式处理的 增,删,查,改

    SPContext.Current.Web.Lists["UserInfo"]:获取网站的List,名称是:UserInfo userlist.AddItem():添加数据到Lis ...

  5. UVa 557 (概率 递推) Burger

    题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡 ...

  6. js对联广告代码,兼容性高

    var browser = { ie6: function () { return ((window.XMLHttpRequest == undefined) && (ActiveXO ...

  7. codevs 3732 解方程

    神题不可言会. f(x+p)=f(x)(mod p) #include<iostream> #include<cstdio> #include<cstring> # ...

  8. windows配置jdk

    一.JDK1.6下载 目前JDK最新版本是JDK1.6,到http://java.sun.com/javase/downloads/index.jsp可以下载JDK1.6. 二.JDK1.6安装 JD ...

  9. Oracle RAC OCR 的备份与恢复

    Oracle Clusterware把整个集群的配置信息放在共享存储上,这些信息包括了集群节点的列表.集群数据库实例到节点的映射以及CRS应用程序资源信息.也即是存放在ocr 磁盘(或者ocfs文件) ...

  10. ruby函数回调的实现方法

    以前一直困惑ruby不像python,c可以将函数随意传递,然后在需要的时候才去执行.其实本质原因是ruby的函数不是对象. 通过查阅资料发现可以使用如下方法: def func(a, b) puts ...