http://poj.org/problem?id=3522

Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5666   Accepted: 2965

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
【题解】:
 这道题简单的来说就是求一棵生成树使最大的边和最小的边差值最小。

  换个角度想就是用n-1条(n个点)数值相差不多的边,组成一棵生成树。 在生成树的prim和kruskal两个算法中很容易就会觉得kruskal的贪心思想会更加适合这道题。 kruskal算法一开始会对边进行排序,然后枚举最小的边。

【code】:
 /**
Judge Status:Accepted Memory:756K
Time:157MS Language:G++
Code Lenght:1613B Author:cj
*/ #include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm> #define N 110
#define M 6000
#define INF 1000000000 using namespace std; struct Nod
{
int a,b,c;
}node[M]; int n,m,parent[N]; bool cmp(Nod a,Nod b)
{
return a.c<b.c;
} int findp(int a)
{
while(a!=parent[a])
{
a=parent[a];
}
return a;
} int merge(Nod nd)
{
int x = findp(nd.a);
int y = findp(nd.b);
if(x!=y)
{
parent[x]=y;
return nd.c;
}
return -;
} int kruskal(int id)
{
int i,cnt = ;
if(m-id+<n-) return INF; //少于n-1边的话 注定够不成生成树
for(i=;i<=N;i++) parent[i]=i;
int flag = ,mins
for(i=id;i<m;i++)
{
int temp = merge(node[i]);
if(temp!=-)
{
if(!flag) mins = temp; //记录最小边
flag = ;
cnt++;
}
if(cnt>=n-) return temp-mins; //只要找到n-1条边即可,返回最大边与最小边的差
}
if(cnt<n-) return INF; //构不成生成树
} int main()
{ while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) break;
if(m==){puts("-1");continue;}
int i;
for(i=;i<m;i++)
{
scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
}
sort(node,node+m,cmp);
int ans = INF;
int temp = kruskal();
if(temp==INF)
{
puts("-1");
continue;
}
if(ans>temp) ans = temp;
for(i=;i<m;i++)
{
temp = kruskal(i); //枚举最小边
if(ans>temp) ans = temp;
}
printf("%d\n",ans);
}
return ;
}

poj 3522 Slim Span (最小生成树kruskal)的更多相关文章

  1. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  2. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  3. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  7. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  8. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. JS轮播图

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  2. Spring(3.2.3) - Beans(11): depends-on

    大多数情况下,Bean 之间的依赖非常直接:被依赖的 Bean 作为属性.在 XML 配置文件中最常见的就是使用 <ref/> 元素.在一些特殊情况下,Bean 之间的依赖不够直接.比如, ...

  3. Redis 命令 - Lists

    BLPOP key [key ...] timeout Remove and get the first element in a list, or block until one is availa ...

  4. jquery easyui datagrid 分页 详解(java)

    1.首先引入easyui包,可以在官方网站下载,http://www.jeasyui.com/download/index.php <link rel="stylesheet" ...

  5. SQL之存储过程,仿数组

    create procedure update_ERPTreeList(@s1 varchar(),@s2 varchar()) As Begin declare @ss1 varchar(),@ss ...

  6. JS面向对象5中写法

    //定义Circle类,拥有成员变量r,常量PI和计算面积的成员函数area() //第1种写法 function Circle(r) { this.r = r; } Circle.PI = 3.14 ...

  7. 抽象类[abstract]_C#

    抽象类(abstract) abstract修饰符可以和类.方法.属性.索引器及事件一起使用.在类声明中使用abstract修饰符以指示某个类只能是其它类的基类.标记为抽象或包含在抽象类中的成员必须通 ...

  8. (转)实战Memcached缓存系统(8)Memcached异步实时读写问题的解决方案SAC

    在使用Memcached时,一般实时读写的场景并不多见.但多是Memcached写入后,在一定时间后才会有读操作.但是如果应用场景,是写入后瞬间即会有读操作呢?似乎没有什么特别之处,我们依然可以这样写 ...

  9. C++ 文件读写方案选型

    严格来说, 有 3 种风格. UNIX 底层读写库 c 语言 stdio 标准库 iostream 流 一般的工程中, 底层读写库封装程度太低, 需要自己处理缓存和很多通用的异常场景. 不适合. 网络 ...

  10. 2014-10 u-boot make过程分析

    /** ****************************************************************************** * @author    Maox ...