BZOJ 4036 [HAOI2015] Set 解题报告
首先我们不能一位一位的考虑,为什么呢?
你想想,你如果一位一位地考虑的话,那么最后就只有 $n$ 个数字,然而他给了你 $2^n$ 个数字,怎么看都不对劲呀。(我是因为这样子弄没过样例才明白的)
所以我们还是要想想其他的方法。
我们是要算步数的期望,然而步数是一个离散的整数,所以我们可以把问题转化一下:
$$E(s) = \sum_{k=1}^{\infty}P(s\ge k)$$
然后就好做了嘛。
我们可以求出一个 $F_i = \sum_{j\subseteq i} p_j$,表示随机选一个数是 $i$ 的子集的概率。
那么就会有:
$$P(s\ge k) = \sum_{i=0}^{2^n-1}(-1)^{c(i)+n+1}\times F_i^{k-1}$$
其中 $c(i)$ 表示 $i$ 的二进制表示中 $1$ 的个数。以上的式子也就是一个容斥的样子,其实说起来就是位运算卷积。然后于是就有:
$$E(s) = \sum_{i=0}^{2^n-1} (-1)^{c(i)+n+1}\sum_{k=0}^{\infty}F_i^{k-1} = \sum_{i=0}^{2^n-1} \frac{(-1)^{c(i)+n+1}}{1 - F_i}$$
然后好像就做完啦。
时间复杂度 $O(n\times2^n)$,空间复杂度 $O(2^n)$。
#include <cstdio>
typedef long double LD;
#define N 1 << 20
#define eps 1e-11 int n, Op[N];
LD A[N]; int main()
{
scanf("%d", &n);
Op[] = n & ? : -;
for (int i = ; i < ( << n); i ++)
{
double x;
scanf("%lf", &x);
A[i] = x;
if (i > ) Op[i] = -Op[i - (i & -i)];
}
for (int k = ; k < ( << n); k <<= )
for (int i = ; i < ( << n); i ++)
{
if (i & k) continue ;
A[i + k] += A[i];
}
bool ok = ;
for (int i = ; ok && i < ( << n) - ; i ++)
if (A[i] + eps > ) ok = ;
if (!ok) puts("INF");
else
{
LD ans = ;
for (int i = ; i < ( << n) - ; i ++)
ans += Op[i] / ( - A[i]);
printf("%.10lf\n", (double) ans);
} return ;
}
4036_Gromah
BZOJ 4036 [HAOI2015] Set 解题报告的更多相关文章
- [BZOJ 4036][HAOI2015]按位或
4036: [HAOI2015]按位或 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 746 Solved: 4 ...
- BZOJ 4619 Swap Space 解题报告
今天是因为David Lee正好讲这个题的类似题,我才做了一下. 本题是world final 2016的一道水…… 题目地址如下 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- bzoj 4036 [HAOI2015]按位或——min-max容斥+FMT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036 题解:https://www.cnblogs.com/Zinn/p/10260126. ...
- BZOJ 1367 [Baltic2004]sequence 解题报告
BZOJ 1367 [Baltic2004]sequence Description 给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots& ...
- BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演
http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...
- BZOJ 1044 木棍分割 解题报告(二分+DP)
来到机房刷了一道水(bian’tai)题.题目思想非常简单易懂(我的做法实际上参考了Evensgn 范学长,在此多谢范学长了) 题目摆上: 1044: [HAOI2008]木棍分割 Time Limi ...
- BZOJ 4341 [CF253 Printer] 解题报告
乍一看这个题好像可以二分优先度搞搞... 实际上能不能这么搞呢...? 我反正不会... 于是开始讲我的乱搞算法: 首先肯定要把任务按照优先度排序. 用一棵在线建点的线段树维护一个时刻是否在工作. 然 ...
- BZOJ 3288 Mato矩阵 解题报告
这个题好神呀..Orz taorunz 有一个结论,这个结论感觉很优美: $$ans = \prod_{i=1}^{n}\varphi(i)$$ 至于为什么呢,大概是这样子的: 对于每个数字 $x$, ...
随机推荐
- HTTP 错误 500.21 - Internal Server Error 处理程序“PageHandlerFactory-Integr
将网站发布到IIS,访问发生如下错误: HTTP 错误 500.21 - Internal Server Error处理程序"PageHandlerFactory-Integr"在 ...
- JavaScript之图片轮换
<!doctype html> <title>javascript图片轮换</title> <meta charset="utf-8"/& ...
- centos6.5下磁盘创建交换分区
1.创建磁盘交换分区 2.创建文件交换分区
- Unite Beijing 2015大型活动
摘要:2015年,我做的最疯狂的事情:网友见面会—去北京参加Unite Beijing 2015大会. 正文:记得,上次在北京参加大型活动还是2008年前–传统电信行业的巅峰时期:那时移动互联网.An ...
- Swift数字类型之间的转换
Swift数字类型之间的转换Swift是一种安全的语言,对于类型的检查非常严格,不同类型之间不能随便转换.一.整型之间的转换在C和Objective-C等其他语言中,整型之间有两种转换方法:从小范围数 ...
- margin的重叠现象
当两个相邻的普通元素设置margin时,则它们的间距并不是简单的外边距相加. <!DOCTYPE html> <html lang="en"> <he ...
- 【转】C#实现二叉查找树
原文URL: http://www.cnblogs.com/CareySon/archive/2012/04/19/ImpleBinaryTreeWithCSharp.html 简介 树是一种非线 ...
- c# DateTime时间格式和JAVA时间戳格式相互转换
/// java时间戳格式时间戳转为C#格式时间 public static DateTime GetTime(long timeStamp) { DateTime dtStart = TimeZon ...
- Oracle + Entity Framework 更新没有设置主键的表
最近用Entity Framework 开发的时候,发现一个问题,在默认情况下,EF不能对一个没有主键的表进行更新.插入和删除的动作. 那么,应该怎么处理没有主键的表呢? 我们打开这个表的edmx文件 ...
- 老老实实学习WCF[第二篇] 配置wcf
老老实实学WCF 第二篇 配置WCF 在上一篇中,我们在一个控制台应用程序中编写了一个简单的WCF服务并承载了它.先回顾一下服务端的代码: using System; using System.Col ...