洛谷 P1123 取数游戏
题目描述
一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。
输入输出格式
输入格式:
输入第1行有一个正整数T,表示了有T组数据。
对于每一组数据,第1行有两个正整数N和M,表示了数字矩阵为N行M列。
接下来N行,每行M个非负整数,描述了这个数字矩阵。
输出格式:
输出包含T行,每行一个非负整数,输出所求得的答案。
输入输出样例
3
4 4
67 75 63 10
29 29 92 14
21 68 71 56
8 67 91 25
2 3
87 70 85
10 3 17
3 3
1 1 1
1 99 1
1 1 1
271
172
99
说明
对于第1组数据,取数方式如下:
[67] 75 63 10
29 29 [92] 14
[21] 68 71 56
8 67 [91] 25
对于20%的数据,N, M≤3;
对于40%的数据,N, M≤4;
对于60%的数据,N, M≤5;
对于100%的数据,N, M≤6,T≤20。
————————————————我是分割线————————————————————
/*
Problem:
OJ:
User: S.B.S.
Time:
Memory:
Length:
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<functional>
#include<bitset>
#include<vector>
#include<list>
#define F(i,j,k) for(int i=j;i<=k;++i)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define maxn 10001
#define inf 0x3f3f3f3f
#define maxm 4001
#define mod 998244353
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int ans;
int a[][];
int dx[]={,,,,,,-,-,-},dy[]={,,-,,-,,,,-};//方向增量
int can[][];//表示是否可选
void DFS(int i,int j,int now){//i为行,j为列,now为现值
if(j>m){//列超出,行+1,列归1
i++;
j=;
}
if(i>n){//行超出,更新ans,结束
if(now>ans)ans=now;
return;
}
int k;
if(can[i][j]==){//选
for(k=;k<;k++)can[i+dx[k]][j+dy[k]]++;/*此次不能用bool存储,可能有多重状态*/
DFS(i,j+,now+a[i][j]);
for(k=;k<;k++)can[i+dx[k]][j+dy[k]]--;
}
DFS(i,j+,now);//不选
}
int main(){
int t,i,j;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
ans=;
for(i=;i<=n;i++){
for(j=;j<=m;j++)scanf("%d",&a[i][j]);
}
memset(can,,sizeof(can));
DFS(,,);
printf("%d\n",ans);
}
return ;
}
洛谷 P1123 取数游戏的更多相关文章
- 洛谷——P1123 取数游戏
P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...
- 洛谷 p1123 取数游戏【dfs】
题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...
- 洛谷P1123取数游戏题解
题目 这是一道简单的搜索题,考查的还是比较基础的东西,其时搜索有时候并不难写,主要是要想到怎么搜.比如这个题,如果想二维四个方向搜则没有头绪,反之因为搜索是用递归实现的,所以我们可以使用递归的特性,把 ...
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- 洛谷P1288 取数游戏II[博弈论]
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1288 取数游戏II
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷1288 取数游戏II
原题链接 因为保证有\(0\)权边,所以整个游戏实际上就是两条链. 很容易发现当先手距离\(0\)权边有奇数条边,那么必胜. 策略为:每次都将边上权值取光,逼迫后手向\(0\)权边靠拢.若此时后手不取 ...
- 洛谷P1288 取数游戏II 题解 博弈论
题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...
- 洛谷 P1288 取数游戏II
奇奇怪怪的游戏,不多写了 #include<cstdio> ]; int main() { int i; scanf("%d",&n); ;i<=n;i+ ...
随机推荐
- OLAP和OLTP基础知识
数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing).联机分析处理OLAP(On-Line Analytical Processing).O ...
- PHP-FPM 与 Nginx 的通信机制总结
PHP-FPM 介绍 CGI 协议与 FastCGI 协议 每种动态语言( PHP,Python 等)的代码文件需要通过对应的解析器才能被服务器识别,而 CGI 协议就是用来使解释器与服务器可以互 ...
- Ubuntu 16.04设置rc.local开机启动命令/脚本的方法
Ubuntu 16.04设置rc.local开机启动命令/脚本的方法 Ubuntu 16.04设置rc.local开机启动命令/脚本的方法(通过update-rc.d管理Ubuntu开机启 ...
- redis 持久化的两种方式
一:快照模式 或许在用Redis之初的时候,就听说过redis有两种持久化模式,第一种是SNAPSHOTTING模式,还是一种是AOF模式,而且在实战场景下用的最多的 莫过于SNAPSHOTTING模 ...
- Mysql - 参数修改
概述 mysql的参数可以分为两类:a. 动态参数,数据库启动期间能被修改,而修改又分为两种(global级,session级).b. 静态参数,即数据库启动期间不能修改. 接下来利用参数wait_t ...
- Orleans核心功能
一.Grain持久性 二.定时器和提醒 三.依赖注入 四.观察者 五.无状态工作者Grains 六.流 一.Grain持久化 1,Grain持久化目标 ①允许不同类型的存储提供者使用不同类型的存储提供 ...
- 膨胀卷积与IDCNN
Dilation 卷积,也被称为:空洞卷积.膨胀卷积. 一.一般的卷积操作: 首先,可以通过动态图,理解正常卷积的过程: 如上图,可以看到卷积操作. 对于CNN结构,通常包括如下部分: 输入层 (in ...
- java 实现生产者-消费者模式
生产和消费者模式有很多种,现在介绍几种常见的方式 wait/notify实现生产和消费者模式 1.使用wait/notify实现生产和消费者模式: public class Depot { // 实际 ...
- netty-socketio 示例代码
socket.io是一个不错的websocket项目,github上有它的java实现:netty-socketio 及 示例项目 netty-socketio-demo,基本上看看demo示例项目就 ...
- 使用Puppeteer进行数据抓取(四)——快速调试
在我们使用chrome作为爬虫获取网页数据时,往往需如下几步. 打开chrome 导航至目标页面 等待目标页面加载完成 解析目标页面数据 保存目标页面数据 关闭chrome 我们实际的编码往往集中在第 ...