传送门

根据原图建一棵新的树。

把原图每一个环上除了深度最浅的点以外的点全部向深度最浅的点连边。

然后可以搞出来一个dfsdfsdfs。

这个时候我们就成功把问题转换成了对子树的询问。

然后就可以对权值分块用莫队做了注意如果不用分块而是用树状数组维护是O(nlognsqrt(n))的

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
inline void write(int x){
	if(!x){putchar('0');return;}
	if(x>9)write(x/10);
	putchar((x-x/10*10)^48);
}
const int N=1e6+5,K=1e6+5;
int n,m,tot=0,dfn[N],low[N],a[N],col[N],siz[K],tim[K][2],in[N],Siz[N],pred[N],sig,ans[N],sig1,mx=0;
vector<int>e[N];
struct Query{int l,r,lim,f,id;}q[N];
inline int getp(int x,int z){return (x-1)/z+1;}
inline void tarjan(int p,int fa){
	dfn[p]=low[p]=++tot,pred[tot]=p;
	for(int i=0;i<e[p].size();++i){
		int v=e[p][i];
		if(v==fa)continue;
		if(!dfn[v])tarjan(v,p),low[p]=min(low[p],low[v]);
		else low[p]=min(low[p],dfn[v]);
	}
}
inline void dfs(int p,int fa){
	in[p]=++tot,Siz[p]=1;
	for(int i=0;i<e[p].size();++i){
		int v=e[p][i];
		if(v==fa)continue;
		if(!in[v]&&low[v]>=dfn[p])dfs(v,p),Siz[p]+=Siz[v];
	}
	for(int i=0;i<e[p].size();++i){
		int v=e[p][i];
		if(v==fa)continue;
		if(!in[v]&&low[v]<dfn[p])dfs(v,p),Siz[pred[low[v]]]+=Siz[v];
	}
}
inline void add(int pos){
	int upd=getp(pos,sig1);
	if(siz[pos]&1)--tim[upd][1],++tim[upd][0];
	else if(siz[pos])++tim[upd][1],--tim[upd][0];
	else ++tim[upd][1];
	++siz[pos];
}
inline void del(int pos){
	int upd=getp(pos,sig1);
	if(!(siz[pos]&1))++tim[upd][1],--tim[upd][0];
	else if(siz[pos]^1)--tim[upd][1],++tim[upd][0];
	else --tim[upd][1];
	--siz[pos];
}
inline bool cmp(const Query&a,const Query&b){return getp(a.l,sig)==getp(b.l,sig)?a.r<b.r:getp(a.l,sig)<getp(b.l,sig);}
int main(){
	n=read(),m=read(),sig=sqrt(n);
	for(int i=1;i<=n;++i)mx=max(mx,a[i]=read());
	sig1=sqrt(mx);
	for(int u,v,i=1;i<=m;++i)u=read(),v=read(),e[u].push_back(v),e[v].push_back(u);
	tarjan(1,0),tot=0,dfs(1,0),m=read();
	for(int i=1;i<=n;++i)col[in[i]]=a[i];
	for(int i=1,v;i<=m;++i)q[i].f=read(),v=read(),q[i].l=in[v],q[i].r=in[v]+Siz[v]-1,q[i].lim=read(),q[i].id=i;
	int ql=1,qr=0,sum=0;
	sort(q+1,q+m+1,cmp);
	for(int i=1;i<=m;++i){
		while(qr<q[i].r)add(col[++qr]);
		while(ql>q[i].l)add(col[--ql]);
		while(qr>q[i].r)del(col[qr--]);
		while(ql<q[i].l)del(col[ql++]);
		sum=0;
		int pos=getp(q[i].lim,sig1);
		for(int j=1;j<pos;++j)sum+=tim[j][q[i].f];
		int L=(pos-1)*sig1+1,R=q[i].lim;
		for(int j=L;j<=R;++j){
			if(!siz[j])continue;
			sum+=(siz[j]&1)==q[i].f;
		}
		ans[q[i].id]=sum;
	}
	for(int i=1;i<=m;++i)write(ans[i]),puts("");
	return 0;
}

2018.10.29 bzoj4564: [Haoi2016]地图(仙人掌+莫队)的更多相关文章

  1. 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)

    传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...

  2. 2018.10.29 NOIP训练 数据结构(带修改莫队)

    传送门 带修莫队板题. 直接按照经典写法做就行了. 代码

  3. luogu P3180 [HAOI2016]地图 仙人掌 线段树合并 圆方树

    LINK:地图 考虑如果是一棵树怎么做 权值可以离散 那么可以直接利用dsu on tree+树状数组解决. 当然 也可以使用莫队 不过前缀和比较难以维护 外面套个树状数组又带了个log 套分块然后就 ...

  4. LOJ#6504. 「雅礼集训 2018 Day5」Convex(回滚莫队)

    题面 传送门 题解 因为并不强制在线,我们可以考虑莫队 然而莫队的时候有个问题,删除很简单,除去它和前驱后继的贡献即可.但是插入的话却要找到前驱后继再插入,非常麻烦 那么我们把它变成只删除的回滚莫队就 ...

  5. loj#6517. 「雅礼集训 2018 Day11」字符串(回滚莫队)

    传送门 模拟赛的时候纯暴力竟然骗了\(70\)分-- 首先对于一堆\(g\)怎么计算概率应该很好想,用总的区间数减去不合法的区间数就行了,简而言之对\(g\)排个序,每一段长为\(d\)的连续序列的区 ...

  6. 2018.09.16 bzoj3757: 苹果树(树上莫队)

    传送门 一道树上莫队. 先用跟bzoj1086一样的方法给树分块. 分完之后就可以莫队了. 但是两个询问之间如何转移呢? 感觉很难受啊. 我们定义S(u,v)" role="pre ...

  7. 2018.10.29 洛谷P4129 [SHOI2006]仙人掌(仙人掌+高精度)

    传送门 显然求出每一个环的大小. Ans=∏i(siz[i]+1)Ans=\prod_i(siz[i]+1)Ans=∏i​(siz[i]+1) 注意用高精度存答案. 代码: #include<b ...

  8. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  9. 2018.10.29 NOIP2018模拟赛 解题报告

    得分: \(70+60+0=130\)(\(T3\)来不及打了,结果爆\(0\)) \(T1\):简单的求和(点此看题面) 原题: [HDU4473]Exam 这道题其实就是上面那题的弱化版,只不过把 ...

随机推荐

  1. Bugku——Flag在index里(http://120.24.86.145:8005/post/)

    Bugku——Flag在index里(http://120.24.86.145:8005/post/) 进入题目发现有一个file参数,查看源码,发现该参数可以包含php文件,并且题目提示,flag在 ...

  2. TZOJ 4621 Grammar(STL模拟)

    描述 Our strings only contain letters(maybe the string contains nothing). Now we define the production ...

  3. akuna capital oa

    记得截图没过的test case啊!否则连复习改bug的证据都没了啊!!! 其实也不一定非得要拿面试来测试,做做lc的contest,看看自己哪里不会,也是一样的效果. 注意是单选题还是多选题 has ...

  4. linux下svn版本控制的常用命令大全

    1.将文件checkout到本地目录 svn checkout path(path是服务器上的目录) 例如:svn checkout svn://192.168.1.1/pro/domain 简写:s ...

  5. spring源码分析(一)

    一.首先分析AliasRegistry接口. 1.Alias别名,Registry注册表,AliasRegistry别名注册表接口. 2.共有四个方法,注册别名,判断是否别名,获取别名数组,移除别名. ...

  6. [BX]指令

    mov ax,[bx] 功能:bx中存放的数据作为一个偏移地址EA,段地址SA默认在ds中,将SA:EA处的数据送入ax中.即(ax)=((ds)*16+(bx)). mov [bx],ax 功能:b ...

  7. Cloud Foundry v2 部署及入门运维

    之前写过一个Guide for Cloud Foundry New Teamer.不过似乎已经有些过时,那会实验室主要是针对的CF v1进行的研究,现在已经全面进入V2时代了.所以更新一下关于Clou ...

  8. js 箭头函数

    箭头函数 ES6标准新增了一种新的函数:Arrow Function(箭头函数). x => x * x相当于: function (x) { return x * x; }箭头函数相当于匿名函 ...

  9. Liunx history

    Linux中history历史命令使用方法详解   (转) 作者:青藤园来源:|2012-05-10 10:     http://os.51cto.com/art/201205/335040.htm ...

  10. andorid 计算器

    avtivity_main.xml <?xml version="1.0" encoding="utf-8"?> <GridLayout xm ...