传送门

codeforces传送门codeforces传送门codeforces传送门

生成函数好题。

卡场差评至今未过

题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: Expected 'EOF', got '\inC' at position 4: v_i\̲i̲n̲C̲=\{a_1,a_2,...a…,定义一棵树的权值为所有点的权值之和,问有多少棵树满足其权值等于i(i=1,2,...,m)i(i=1,2,...,m)i(i=1,2,...,m)


对每个点的值构造生成函数g(x)=∑nanxn(an=[n∈C])g(x)=\sum_na_nx^n(a_n=[n\in C])g(x)=∑n​an​xn(an​=[n∈C]),令f(x)f(x)f(x)表示答案的生成函数。

那么f(x)=g(x)f2(x)+1f(x)=g(x)f^2(x)+1f(x)=g(x)f2(x)+1 注意空树的情况,这个递推式相当于考虑自己的权值以及左右子树的权值

然后解方程:f(x)=21−1−4g(x)f(x)=\frac 2{1-\sqrt{1-4g(x)}}f(x)=1−1−4g(x)​2​

然后上多项式开方和多项式求逆即可。

悲伤的故事:封装了一波多项式运算导致常数太大,于是只能在codeforcescodeforcescodeforces上水过,bzojbzojbzoj至今未过

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
typedef long long ll;
const int mod=998244353;
int n,lim,tim,m;
vector<int>A,B,pos,Inv;
#define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b))
#define dec(a,b) ((a)>=(b)?(a)-(b):(a)-(b)+mod)
#define mul(a,b) ((ll)(a)*(b)%mod)
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)ret=mul(ret,a);return ret;}
inline void ntt(vector<int>&a,const int&type){
	for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
	for(ri mid=1,wn,mult=(mod-1)/2,typ=type==1?3:(mod+1)/3;mid<lim;mid<<=1,mult>>=1){
		wn=ksm(typ,mult);
		for(ri j=0,len=mid<<1;j<lim;j+=len)for(ri w=1,a0,a1,k=0;k<mid;++k,w=mul(w,wn)){
			a0=a[j+k],a1=mul(w,a[j+k+mid]);
			a[j+k]=add(a0,a1),a[j+k+mid]=dec(a0,a1);
		}
	}
	if(type==-1)for(ri i=0,inv=ksm(lim,mod-2);i<lim;++i)a[i]=mul(a[i],inv);
}
inline void init(const int&up){
	lim=1,tim=0;
	while(lim<=up)lim<<=1,++tim;
	pos.resize(lim),pos[0]=0;
	for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
struct poly{
	vector<int>a;
	inline int deg()const{return a.size()-1;}
	poly(int k,int x=0){a.resize(k+1),a[k]=x;}
	inline int&operator[](const int&k){return a[k];}
	inline const int&operator[](const int&k)const{return a[k];}
	inline poly extend(const int&k){poly ret=*this;return ret.a.resize(k),ret;}
	friend inline poly operator+(const poly&a,const poly&b){
		poly ret(max(a.deg(),b.deg()));
		for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);
		for(ri i=0;i<=b.deg();++i)ret[i]=add(ret[i],b[i]);
		return ret;
	}
	friend inline poly operator-(const poly&a,const poly&b){
		poly ret(max(a.deg(),b.deg()));
		for(ri i=0;i<=a.deg();++i)ret[i]=add(ret[i],a[i]);
		for(ri i=0;i<=b.deg();++i)ret[i]=dec(ret[i],b[i]);
		return ret;
	}
	friend inline poly operator*(const int&a,const poly&b){
		poly ret(b.deg());
		for(ri i=0;i<=b.deg();++i)ret[i]=mul(a,b[i]);
		return ret;
	}
	friend inline poly operator*(const poly&a,const poly&b){
		int n=a.deg(),m=b.deg();
		init(n+m),A.resize(lim),B.resize(lim);
		poly ret(lim-1);
		for(ri i=0;i<=n;++i)A[i]=a[i];
		for(ri i=0;i<=m;++i)B[i]=b[i];
		for(ri i=n+1;i<lim;++i)A[i]=0;
		for(ri i=m+1;i<lim;++i)B[i]=0;
		ntt(A,1),ntt(B,1);
		for(ri i=0;i<lim;++i)A[i]=mul(A[i],B[i]);
		return ntt(A,-1),ret.a=A,ret;
	}
	inline poly poly_inv(poly a,const int&k){
		a=a.extend(k);
		if(k==1)return poly(0,ksm(a[0],mod-2));
		poly f0=poly_inv(a,(k+1)>>1);
		return (2*f0-((f0*f0.extend(k))*a).extend(k)).extend(k);
	}
	inline poly poly_sqrt(poly a,const int&k){
		a=a.extend(k);
		if(k==1)return poly(0,1);
		poly f0=poly_sqrt(a,(k+1)>>1).extend(k);
		return (((f0*f0).extend(k)+a)*poly_inv((2*f0),k)).extend(k);
	}
};
int main(){
	n=read(),m=read();
	int len;
	for(len=1;len<=m;len<<=1);
	poly sqr=(len);
	for(ri i=1,v;i<=n;++i){
		v=read();
		if(v<=m)sqr[v]=mod-4;
	}
	++sqr[0],sqr=sqr.poly_sqrt(sqr,len),++sqr[0],sqr=sqr.poly_inv(sqr,len);
	for(ri i=1;i<=m;++i)cout<<mul(sqr[i],2)<<'\n';
	return 0;
}

2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)的更多相关文章

  1. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

  2. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  3. [Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]

    题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 ...

  4. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  5. bzoj 3625小朋友和二叉树 多项式求逆+多项式开根 好题

    题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \( ...

  6. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  7. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  8. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  9. 【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)

    [BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\fra ...

随机推荐

  1. mute

    mute - 必应词典 英[mjuːt] n.哑吧:沉默的人:[法律]拒绝答辩的被告人:鸟粪 adj.哑的:缄默无言的:(一时)说不出话的:(猎狗)不叫的 v.排泄:减弱…的声音:柔和…的色调 网络静 ...

  2. 【模型】Toon Dragon

    下载地址:点击下载

  3. am start的总结,-d参数的总结,以及python中传递内容包含中文及特殊字符&的解决方案

    一.am start的内容的整理 主要包含以下内容:am start的常规操作及参数的含义,-d 参数的含义,以及如何在APK中设置参数获取 使用命令如下:adb shell am start -n ...

  4. To be a better me

    2017.4.15 突然成为前端实习生.做了两个周的官网项目,主要是更新官网一些文字图片以及新加一个页面,因为是静态页面,所以熟悉了代码就上手了.幸好没出什么差错. 两周后,实习结束. 2017.7. ...

  5. linux命令学习之:ifconfig

    ifconfig命令被用于配置和显示Linux内核中网络接口的网络参数.用ifconfig命令配置的网卡信息,在网卡重启后机器重启后,配置就不存在.要想将上述的配置信息永远的存的电脑里,那就要修改网卡 ...

  6. linux操作Mysql数据库基本命令

    1.显示数据库 show databases; 2.选择数据库 use 数据库名; 3.显示数据库中的表 show tables; 4.显示数据表的结构 describe 表名; 5.显示表中记录 S ...

  7. 28- foreach里面实现一次遍历两个链表

    由于业务需求,要在一个foreach里面实现一次遍历两个链表:后台传来的是连个list:  分别是 <c:set var = "i" value = "0" ...

  8. oracle 11g用exp无法导出空表的解决方案

    racle 11g中有个新特性,当表无数据时,不分配segment,以节省空间,当我们用exp导出空表时,无法导出. 解决方法是两个方面, 一是处理现有的空表,让其能导出: 二是设置参数,让后续的新的 ...

  9. js中用变量作为$()内id的值、动态获取id,及获取其下面的class元素

    在开发中写了一个公共方法对模板tpl进行渲染,然而他的id是通过变量传值过来的,在网上查阅后找到解决方法,写法如下: $("#"+tplVal).html(html); 用$(&q ...

  10. 使用 gitbook 写东西

    会了markdown 不会用gitbook怎么可以呢 先安装 npm install gitbook -g npm install gitbook-cli -g cli使用代码是客户端的意思,要牢记 ...