机器学习进阶-图像形态学变化-礼帽与黑帽 1.cv2.TOPHAT(礼帽-原始图片-开运算后图片) 2.cv2.BLACKHAT(黑帽 闭运算-原始图片)
1.op = cv2.TOPHAT 礼帽:原始图片-开运算后的图片
2. op=cv2.BLACKHAT 黑帽: 闭运算后的图片-原始图片
礼帽:表示的是原始图像-开运算(先腐蚀再膨胀)以后的图像
黑帽:表示的是闭运算(先膨胀再腐蚀)后的图像 - 原始图像
代码:
第一步:读取图片
第二步:使用cv2.MOPRH_TOPHAT获得礼帽图片
第三步:使用cv2.MOPRH_BLACKHAT获得黑帽图片
import cv2
import numpy as np # 第一步读入当前图片
img = cv2.imread('dige.png')
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 第二步:使用cv2.MORPH_TOPHAT获得礼帽图片
kernel = np.ones((3, 3), np.uint8)
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 第三步:使用cv2.MORPH_BLACKHAT获得黑帽图片
kernel = np.ones((3, 3), np.uint8)
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()
机器学习进阶-图像形态学变化-礼帽与黑帽 1.cv2.TOPHAT(礼帽-原始图片-开运算后图片) 2.cv2.BLACKHAT(黑帽 闭运算-原始图片)的更多相关文章
- 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op = cv2.MO ...
- 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)
1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...
- 机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)
1.cv2.dilate(src, kernel, iteration) 参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数 膨胀操作原理:存在一个ke ...
- 机器学习进阶-图像形态学操作-腐蚀操作 1.cv2.erode(进行腐蚀操作)
1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个ker ...
- 机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None) 找出 ...
- 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...
- 机器学习进阶-图像基本操作-数值计算 1.cv2.add(将图片进行加和) 2.cv2.resize(图片的维度变换) 3.cv2.addWeighted(将图片按照公式进行重叠操作)
1.cv2.add(dog_img, cat_img) # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, ...
- 机器学习进阶-图像基本操作-图像数据读取 1.cv2.imread(图片读入) 2.cv2.imshow(图片展示) 3.cv2.waitKey(图片停留的时间) 4.cv2.destroyAllWindows(清除所有的方框界面) 5.cv2.imwrite(对图片进行保存)
1. cv2.imread('cat.jpg', cv2.IMGREAD_GRAYSCALE) # 使用imread读入图像(BGR顺序), 使用IMGREAD_GRAYSCALE 使得读入的图片为 ...
- 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)
1.dlib.get_frontal_face_detector() # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...
随机推荐
- Excel导入MS SQL SERVER 操作
关于Excel导入到sql操作的相关问题总结: 一.大批量数据导入 方法1.从Excel大批量数据导入时我们可以使用sql里面有一个batch copy的功能 方法2.在sql中建一个table ty ...
- 微服务测试打桩/mock工具mountebank
1,安装 Linux安装包,不用安装Node.js https://s3.amazonaws.com/mountebank/v1.10/mountebank-v1.10.0-linux-x64.tar ...
- vue2.0变化
之前有很多的vue知识总结都是围绕1.0版本实现的,下面主要总结一下2.0相对于1.0的一些变化. 组件定义 在vue1.0中,我们有使用vue.extend()来创建组件构造器继而创建组件实例,如下 ...
- 【ZZ】谈谈持续集成,持续交付,持续部署之间的区别
谈谈持续集成,持续交付,持续部署之间的区别 http://blog.flow.ci/cicd_difference/ 谈谈持续集成,持续交付,持续部署之间的区别 2016年08月03日 标签:beta ...
- 时间同步chrony
时间同步chrony [root@compute02 ~]# yum install chrony 编辑配置文件 将sever区块下的内容修改为时间服务器的地址 .此处可以写局域网内的 ...
- MySQL学习----多版本并发mvcc
MySQL中的大多数事务性存储引擎实现的都不是简单的行级锁.基于提升并发性能的考虑,他们一般实现了多版本并发控制(mvcc).不仅是mysql,包括oracle,postgresql等其他数据库也实现 ...
- 多级字典表单的Python实现
需求: 可依次选择进入各子菜单 可从任意一层往回退到上一层 可从任意一层退出程序 数据结构 menu = { '北京':{ '海淀':{ '五道口':{ 'soho':{}, '网易':{}, 'go ...
- [UE4]Text Block文字字体偏移
这样看起来就像是真正的垂直居中对齐了.
- Mybatis 系列3-结合源码解析properties节点和environments节点
[Mybatis 系列10-结合源码解析mybatis 执行流程] [Mybatis 系列9-强大的动态sql 语句] [Mybatis 系列8-结合源码解析select.resultMap的用法] ...
- CVE-2017-8570漏洞利用
CVE-2017-8570漏洞是一个逻辑漏洞,利用方法简单,影响范围广.由于该漏洞和三年前的SandWorm(沙虫)漏洞非常类似,因此我们称之为“沙虫”二代漏洞. 编号 CVE-2017-8570 影 ...