就是给了六个关于圆的算法。实现它们。

注意的是,不仅输出格式那个符号什么的要一样。坐标的顺序也要从小到大……

基本上没考虑什么精度的问题,然后就过了。

大白鼠又骗人。也许我的方法比較好?

我的做法就是列方程+旋转+平移

我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double eps=1e-7;
const double pi=acos(-1.0);
int dcmp(double x){return fabs(x)<eps?0:x<0?-1:1;}
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator +(dot a){return dot(x+a.x,y+a.y);}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
dot operator *(double a){return dot(x*a,y*a);}
double operator *(dot a){return x*a.y-y*a.x;}
dot operator /(double a){return dot(x/a,y/a);}
double operator /(dot a){return x*a.x+y*a.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
void in(){scanf("%lf%lf",&x,&y);}
void out(){printf("%f %f\n",x,y);}
dot norv(){return dot(-y,x);}
dot univ(){double a=mod();return dot(x/a,y/a);}
dot ro(double a){return dot(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a));}
double mod(){return sqrt(x*x+y*y);}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
bool operator >(dot a,dot b)
{
return dcmp(a.x-b.x)!=0? a.x>b.x:a.y>b.y;
}
struct fun
{
double a,b,c;
fun(){}
fun(double x,double y,double z){a=x;b=y;c=z;}
fun(dot d,dot e){a=e.y-d.y;b=d.x-e.x;c=d.x*e.y-d.y*e.x;}
dot sf(fun d)
{
double e,f,g;
e=dot(a,d.a)*dot(b,d.b);
f=dot(c,d.c)*dot(b,d.b);
g=dot(a,d.a)*dot(c,d.c);
return dot(f/e,g/e);
}
void in(){scanf("%lf%lf%lf",&a,&b,&c);}
void out(){printf("%f %f %f\n",a,b,c);}
};
void solve1(dot a,dot b,dot c)
{
dot g;
fun e,f;
double r;
e=fun((a+b)/2,(a+b)/2+(a-b).norv());
f=fun((a+c)/2,(a+c)/2+(a-c).norv());
g=e.sf(f);
r=g.dis(a);
printf("(%.6lf,%.6lf,%.6lf)\n",g.x,g.y,r);
}
void solve2(dot a,dot b,dot c)
{
double e,d,f,g,r;
fun h,i;
dot j;
d=a.dis(b);
e=a.dis(c);
f=b.dis(c);
g=acos((d*d+e*e-f*f)/2/d/e)/2;
if(dcmp((b-a)*(c-a))>0)
h=fun(a,(b-a).ro(g)+a);
else
h=fun(a,(c-a).ro(g)+a);
g=acos((e*e+f*f-d*d)/2/e/f)/2;
if(dcmp((a-c)*(b-c))>0)
i=fun(c,(a-c).ro(g)+c);
else
i=fun(c,(b-c).ro(g)+c);
j=h.sf(i);
r=fabs((j-a)*(b-a)/a.dis(b));
printf("(%.6lf,%.6lf,%.6lf)\n",j.x,j.y,r);
}
double cg(dot a)
{
double b=atan2(a.y,a.x);
b=b/pi*180;
return dcmp(b)<0? b+180:dcmp(b-180)!=0?b:0;
}
void solve3(dot a,double r,dot p)
{
dot d,g;
double b,c,e,f;
b=a.dis(p);
c=asin(r/b);
if(dcmp(b-r)<0)
printf("[]\n");
else if(dcmp(b-r)==0)
{
d=(p-a).norv();
e=cg(d);
printf("[%.6f]\n",e);
}
else
{
d=(a-p).ro(c);
g=(a-p).ro(2*pi-c);
e=cg(d);
f=cg(g);
if(e>f)swap(e,f);
printf("[%.6f,%.6f]\n",e,f);
}
}
void solve4(dot p,dot a,dot b,double r)
{
double d,e;
dot c,f,g;
c=fun(a,b).sf(fun(p,p+(a-b).norv()));
d=p.dis(c);
if(dcmp(d-2*r)>0) printf("[]\n");
else if(dcmp(d)==0)
{
f=p+(a-b).norv().univ()*r;
g=p-(a-b).norv().univ()*r;
if(f>g)swap(f,g);
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n",f.x,f.y,g.x,g.y);
}
else if(dcmp(d-2*r)==0)
{
f=(p+c)/2;
printf("[(%.6f,%.6f)]\n",f.x,f.y);
}
else
{
e=acos((d-r)/r);
f=((c-p).univ()*r).ro(e)+p;
e=-e;
g=((c-p).univ()*r).ro(e)+p;
if(f>g)swap(f,g);
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n",f.x,f.y,g.x,g.y);
}
}
void solve5(dot a,dot b,dot c,dot d,double r)
{
dot i,j,k,l;
double t1,t2;
fun e,f,g,h;
e=fun(a,b);
f=fun(c,d);
t1=sqrt(pow(e.a,2)+pow(e.b,2));
t2=sqrt(pow(f.a,2)+pow(f.b,2));
g=fun(e.a/t1,e.b/t1,e.c/t1+r);
h=fun(f.a/t2,f.b/t2,f.c/t2+r);
i=g.sf(h);
g.c=e.c/t1-r;j=g.sf(h);
h.c=f.c/t2-r;k=g.sf(h);
g.c=e.c/t1+r;l=g.sf(h);
if(i>j)swap(i,j);
if(i>k)swap(i,k);
if(i>l)swap(i,l);
if(j>k)swap(j,k);
if(j>l)swap(j,l);
if(k>l)swap(k,l);
printf("[(%.6f,%.6f),(%.6f,%.6f),(%.6f,%.6f),(%.6f,%.6f)]\n",
i.x,i.y,j.x,j.y,k.x,k.y,l.x,l.y);
}
void solve6(dot a,double r1,dot b,double r2,double r)
{
dot f,g;
double c,d,e,h;
c=a.dis(b);
d=r1+r;
e=r2+r;
if(dcmp(c-r-r-r1-r2)>0)
printf("[]\n");
else if(dcmp(c-r-r-r1-r2)==0)
{
f=a+(b-a).univ()*(r1+r);
printf("[(%.6f,%.6f)]\n",f.x,f.y);
}
else
{
h=acos((c*c+d*d-e*e)/2/c/d);
f=((b-a).univ()*(r1+r)).ro(h)+a;
h=-h;
g=((b-a).univ()*(r1+r)).ro(h)+a;
if(f>g)swap(f,g);
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n",f.x,f.y,g.x,g.y);
}
}
int main()
{
char s[100];
dot a,b,c,d;
double r,r1,r2;
while(scanf("%s",s)!=EOF)
{
if(strcmp(s,"CircumscribedCircle")==0)
{
a.in();b.in();c.in();
solve1(a,b,c);
}
else if(strcmp(s,"InscribedCircle")==0)
{
a.in();b.in();c.in();
solve2(a,b,c);
}
else if(strcmp(s,"TangentLineThroughPoint")==0)
{
a.in();cin>>r;b.in();
solve3(a,r,b);
}
else if(strcmp(s,"CircleThroughAPointAndTangentToALineWithRadius")==0)
{
a.in();b.in();c.in();cin>>r;
solve4(a,b,c,r);
}
else if(strcmp(s,"CircleTangentToTwoLinesWithRadius")==0)
{
a.in();b.in();c.in();d.in();cin>>r;
solve5(a,b,c,d,r);
}
else
{
a.in();cin>>r1;b.in();cin>>r2;cin>>r;
solve6(a,r1,b,r2,r);
}
}
/*solve1(dot(0,0),dot(20,1),dot(8,17));
solve2(dot(0,0),dot(20,1),dot(8,17));
solve3(dot(200,200),100,dot(40,150));
solve3(dot(200,200),100,dot(200,100));
solve3(dot(200,200),100,dot(270,210));
solve4(dot(100,200),dot(75,190),dot(185,65),100);
solve4(dot(75,190),dot(75,190),dot(185,65),100);
solve4(dot(100,300),dot(100,100),dot(200,100),100);
solve4(dot(100,300),dot(100,100),dot(200,100),99);
solve5(dot(50,80),dot(320,190),dot(85,190),dot(125,40),30);
solve6(dot(120,200),50,dot(210,150),30,25);
solve6(dot(100,100),80,dot(300,250),70,50);*/
}

Description

Problem E

2D Geometry 110 in 1!

This is a collection of 110 (in binary) 2D geometry problems.

CircumscribedCircle x1 y1 x2 y2 x3 y3

Find out the circumscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius.

InscribedCircle x1 y1 x2 y2 x3 y3

Find out the inscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius.

TangentLineThroughPoint xc yc r xp yp

Find out the list of tangent lines of circle centered (xc,yc) with radius r that pass through point (xp,yp). Each tangent line is formatted as a single real number "angle" (in degrees), the angle of the line (0<=angle<180). Note that the answer should be
formatted as a list (see below for details).


CircleThroughAPointAndTangentToALineWithRadius xp yp x1 y1 x2 y2 r

Find out the list of circles passing through point (xp, yp) that is tangent to a line (x1,y1)-(x2,y2) with radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer should be formatted as a list. If there is no
answer, you should print an empty list.


CircleTangentToTwoLinesWithRadius x1 y1 x2 y2 x3 y3 x4 y4 r

Find out the list of circles tangent to two non-parallel lines (x1,y1)-(x2,y2) and (x3,y3)-(x4,y4), having radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer should be formatted as a list. If there is no
answer, you should print an empty list.


CircleTangentToTwoDisjointCirclesWithRadius x1 y1 r1 x2 y2 r2 r

Find out the list of circles externally tangent to two disjoint circles (x1,y1,r1) and (x2,y2,r2), having radius r. By "externally" we mean it should not enclose the two given circles. Each circle is formatted as (x,y), since the radius is already given.
Note that the answer should be formatted as a list. If there is no answer, you should print an empty list.

For each line described above, the two endpoints will not be equal. When formatting a list of real numbers, the numbers should be sorted in increasing order; when formatting a list of (x,y) pairs, the pairs should be sorted in increasing order of x. In case
of tie, smaller y comes first.

Input

There will be at most 1000 sub-problems, one in each line, formatted as above. The coordinates will be integers with absolute value not greater than 1000. The input is terminated by end of file (EOF).

Output

For each input line, print out your answer formatted as stated in the problem description. Each number in the output should be rounded to six digits after the decimal point. Note that the list should be enclosed by square brackets, and tuples should be enclosed
by brackets. There should be no space characters in each line of your output.

Sample Input

CircumscribedCircle 0 0 20 1 8 17
InscribedCircle 0 0 20 1 8 17
TangentLineThroughPoint 200 200 100 40 150
TangentLineThroughPoint 200 200 100 200 100
TangentLineThroughPoint 200 200 100 270 210
CircleThroughAPointAndTangentToALineWithRadius 100 200 75 190 185 65 100
CircleThroughAPointAndTangentToALineWithRadius 75 190 75 190 185 65 100
CircleThroughAPointAndTangentToALineWithRadius 100 300 100 100 200 100 100
CircleThroughAPointAndTangentToALineWithRadius 100 300 100 100 200 100 99
CircleTangentToTwoLinesWithRadius 50 80 320 190 85 190 125 40 30
CircleTangentToTwoDisjointCirclesWithRadius 120 200 50 210 150 30 25
CircleTangentToTwoDisjointCirclesWithRadius 100 100 80 300 250 70 50

Output for the Sample Input

(9.734940,5.801205,11.332389)
(9.113006,6.107686,5.644984)
[53.977231,160.730818]
[0.000000]
[]
[(112.047575,299.271627),(199.997744,199.328253)]
[(-0.071352,123.937211),(150.071352,256.062789)]
[(100.000000,200.000000)]
[]
[(72.231286,121.451368),(87.815122,63.011983),(128.242785,144.270867),(143.826621,85.831483)]
[(157.131525,134.836744),(194.943947,202.899105)]
[(204.000000,178.000000)]

Rujia Liu's Present 4: A Contest Dedicated to Geometry and CG Lovers

Special Thanks: Di Tang and Yi Chen

Source

Root :: Prominent Problemsetters :: Rujia Liu



Root :: Rujia Liu's Presents :: Present 4: Dedicated to Geometry and CG Lovers

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D ::
Examples

UVA12304-2D Geometry 110 in 1!的更多相关文章

  1. UVA-12304 2D Geometry 110 in 1! (有关圆的基本操作)

    UVA-12304 2D Geometry 110 in 1! 该问题包含以下几个子问题 CircumscribedCircle x1 y1 x2 y2 x3 y3 : 三角形外接圆 Inscribe ...

  2. UVA12304 2D Geometry 110 in 1! 计算几何

    计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...

  3. UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]

    题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...

  4. UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!

    这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...

  5. Uva 12304 - 2D Geometry 110 in 1!

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. [GodLove]Wine93 Tarining Round #9

    比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算   ID Title Pro ...

  7. .Uva&LA部分题目代码

    1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...

  8. uva 12304点与直线与圆之间的关系

    Problem E 2D Geometry 110 in 1! This is a collection of 110 (in binary) 2D geometry problems. Circum ...

  9. (转) [it-ebooks]电子书列表

    [it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...

随机推荐

  1. Hive笔记之Fetch Task

    在使用Hive的时候,有时候只是想取表中某个分区的前几条的记录看下数据格式,比如一个很常用的查询: select * from foo where partition_column=bar limit ...

  2. BurpSuite中的安全测试插件推荐

    Burp Suite 是用于攻击web 应用程序的集成平台.它包含了许多工具,并为这些工具设计了许多接口,以促进加快攻击应用程序的过程.所有的工具都共享一个能处理并显示HTTP 消息,持久性,认证,代 ...

  3. django startproject xxx:报错UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 13: ordinal not in range(128)

    django startproject xxx:报错UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 13: o ...

  4. CAS单点登录流程

    CAS的官方站点: https://apereo.github.io/cas/5.2.x/index.html 概念解读: The TGT (Ticket Granting Ticket), stor ...

  5. 《NodeJS开发指南》第五章微博实例开发总结

    所有文章搬运自我的个人主页:sheilasun.me <NodeJS开发指南>这本书用来NodeJS入门真是太好了,而且书的附录部分还讲到了闭包.this等JavaScript常用特性.第 ...

  6. [转] impress.js学习

    引子 断断续续用了好几天,终于把 impress.js 源码看完,作为刚入门的前端菜鸟,这是我第一次看 js 源码,最初还是比较痛苦的.不过还好,impress.js源码的注释相当清楚,每个函数和事件 ...

  7. 当mysql 遇到 ctrl+c

    目的 为了理解MySQL在执行大SQL时,对执行CTRL+C产生的疑惑,本文通过实验测试和源码分析两个方面,对MySQL处理CTRL+C的详细过程进行分析和讲解,从而解除DBA及开发人员对CTRL+C ...

  8. 【AtCoder】ARC085

    C - HSI 题解 \(E = 1900 * (N - M) + 100 * M + \frac{1}{2^{M}} E\) \(E = 2^{M}(1900 * (N - M) + 100 * M ...

  9. 【LOJ】#6436. 「PKUSC2018」神仙的游戏

    题解 感觉智商为0啊QAQ 显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等 那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s ...

  10. Codeforces 1028E Restore Array 构造

    我发现我构造题真的不会写, 想了好久才想出来.. 我们先把n = 2, 所有数字相等, 所有数字等于0的都特判掉. 找到一个b[ i ] > b[ i - 1 ]的位置把它移到最后一个位置, 并 ...