poj 1776 Task Sequences
http://poj.org/problem?id=1776
题意:
有一个机器要完成N个作业,
给你一个N*N的矩阵,
M[i][j]=1,表示完成第i个作业后不用重启机器,继续去完成第j个作业
M[i][j]=0,表示如果做完第i个作业,想要继续去做第j个作业,那么必须重启机器
对于任意两个作业都有M[i][j] = 1或者M[j][i] = 1.
求出完成这N个作业启动机器的最少次数,以及每次启动完成作业的数量和这些作业的顺序
初始时机器处于关闭状态.
将M当做图,就是找最少的路径条数覆盖所有的点
最小路径覆盖?
但不能保证图是二分图,所以不能用匈牙利算法
题目中说对于任意两个作业都有M[i][j] = 1或者M[j][i] = 1
所以这张图是在竞赛图的基础上加了几条边
而竞赛图一定存在一条哈密顿通路
所以一定只需要一次开机完成所有作业
然后就是输出竞赛图上的一条哈密顿通路
详请参见文章http://www.cnblogs.com/TheRoadToTheGold/p/8439160.html
#include<cstdio>
#include<cstring>
#include<iostream> using namespace std; #define N 1001 int n;
char s[N<<];
int e[N][N]; int front,nxt[N]; int st[N]; void Hamilton()
{
front=;
memset(nxt,,sizeof(nxt));
for(int i=;i<=n;++i)
{
if(e[front][i])
{
nxt[i]=front;
front=i;
continue;
}
int j,k;
for(j=front;j;k=j,j=nxt[j])
if(e[j][i])
{
nxt[i]=j;
nxt[k]=i;
break;
}
if(!j) nxt[k]=i;
}
} void print()
{
printf("1\n%d\n",n);
int now=front;
int top=;
while(now)
{
st[++top]=now;
now=nxt[now];
}
for(int i=top;i>;--i) printf("%d ",st[i]);
printf("%d\n",st[]);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
memset(e,false,sizeof(e));
for(int i=;i<=n;++i)
{
getchar();
scanf("%[^\n]",s);
int t=;
for(int j=;t<n;j+=) e[i][++t]=s[j]-'';
}
Hamilton();
print();
}
}
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 2637 | Accepted: 763 | Special Judge |
Description
ACM works in a really special way. The machine can finish one task in a short time, after it's finishing one task, it should smoothly move to the next one, otherwise the machine will stop automatically. You must start it up again to make it continue working. Of course, the machine cannot move arbitrarily from one task to another. So each time before it starts up, one task sequence should be well scheduled. Specially, a single task also can be regarded as a sequence. In the sequence, the machine should be able to smoothly move from one task to its successor (if exists). After started up, the machine always works according to the task sequence, and stops automatically when it finishes the last one. If not all the tasks have been finished, the machine has to start up again and works according to a new sequence. Of course, the finished tasks can't be scheduled again.
For some unknown reasons, it was guaranteed that for any two tasks i and j, the machine can smoothly move from i to j or from j to i or both. Because the startup process is quite slow, Tom would like to schedule the task sequences properly, so that all the tasks can be completed with minimal number of startup times. It is your task to help him achieve this goal.
Input
Input is terminated by end of file.
Output
Sample Input
3
0 1 1
1 0 1
0 0 0
Sample Output
1
3
2 1 3
Source
poj 1776 Task Sequences的更多相关文章
- POJ 1776 Task Sequences(竞赛图构造哈密顿通路)
链接:http://poj.org/problem?id=1776 本文链接:http://www.cnblogs.com/Ash-ly/p/5458635.html 题意: 有一个机器要完成一个作业 ...
- POJ 1239 Increasing Sequences 动态规划
题目链接: http://poj.org/problem?id=1239 Increasing Sequences Time Limit: 1000MSMemory Limit: 10000K 问题描 ...
- POJ 3553 Task schedule
原题链接:http://poj.org/problem?id=3553 这道题主要就是贪心思想吧,对于每个job,根据其截止时间 dj 从小到大排序,我们必须要尽快把dj最小的job完成掉,这样才能使 ...
- POJ 1239 Increasing Sequences(经典的两次dp)
http://poj.org/problem?id=1239 题意:给出一串序列,现在要添加逗号作为分隔符,使得序列是递增序列,然后让最后一个数尽量小,第一个数尽量大. 思路:先从头到尾进行一次dp, ...
- POJ 3553 Task schedule【拓扑排序 + 优先队列 / 贪心】
Task schedule Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 515 Accepted: 309 Special J ...
- poj 2034 Anti-prime Sequences(dfs)
//相邻的 2.3......d 之和都要不为素数 # include <algorithm> # include <stdio.h> using namespace std; ...
- UVALIVE 2954 Task Sequences
竞赛图:图中的任意两点间有且仅有一条有向弧连接 求竞赛图中的哈密顿路的算法: 首先,由数学归纳法可证竞赛图在n>=2时必存在哈密顿路: (1)n=2时显然: (2)假设n=k时,结论成立,哈密顿 ...
- POJ 1239 Increasing Sequences [DP]
题意:略. 思路:进行两次dp. 第一次dp从前向后,用dp[x]表示从第x位向前dp[x]位可构成一个数字,且与前面的数组符合题意要求.最后求的dp[n]即为最后一个数字的长度. 而题目还有要求,所 ...
- poj 动态规划题目列表及总结
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
随机推荐
- VLAN入门知识
版权声明: https://blog.csdn.net/xinyuan510214/article/details/52020987 本文乃fireaxe原创,使用GPL发布,可以自由拷贝,转载.但转 ...
- 【SE】Week1 : 个人博客作业
快速看完整部教材,列出你不懂的 5 - 10 个问题,发布在你的个人博客上. 1)针对书中提到的NABCD模型中的N,如何发掘市场不明确的潜在用户需求? 2)PM是否负责团队职责的分配以及工程模块的设 ...
- Scrum Meeting NO.3
Scrum Meeting No.2 1.会议内容 之前的两天无法登录TFS服务器来生成燃尽图,再加上这种方式只能生成当日的燃尽图,我们决定改用excel生成燃尽图.(作为一个渣渣pm,我用了一下午才 ...
- 软件工程学习之小学四则混合运算出题软件 Version 1.1 设计思路及感想
继上次采用形式文法来生成混合运算的算式,由于算法中没有引入控制参数而导致容易产生形式累赘(多余的括号等)的算式.本次更新决定采用一种更为简单有效的生成方式,由给出的一个随机的最终答案S,通过给定的一个 ...
- FINAL视频预发布
视频地址:http://v.youku.com/v_show/id_XMTg0MjMzNDIwNA==.html?spm=a2hzp.8253869.0.0&from=y1.7-2
- Navicat Premium和Navicat for MySQL哪个好用?
之前在Navicat官网下载了Navicat Premium和Navicat for MySQL使用.Navicat官网产品下载地址:https://www.navicat.com.cn/produc ...
- Python进阶-字符串格式化
目录 前言 %格式化 str.format() f-Strings 特殊符号处理 前言 在 Python 3.6 之前,字符串格式化方法主要有两种: %格式化 str.format() 在Python ...
- LOJ#551 Matrix
本地打表在线AC什么的最喜欢了. 题意 \(\rm Alice\)和\(\rm Bob\)在玩游戏,他们要给一个\(n\times n\)的矩阵打标记.初始时没有任何标记,每一轮\(\rm Bob\) ...
- Linux中dpkg工具update-alternatives实现符号链接软件版本的切换(转)
一.功能作用 update-alternatives是dpkg的实用工具,用来维护系统命令的符号链接,以决定系统默认使用什么命令. 在Debian系统中,我们可能会同时安装有很多功能类似的程序和可选配 ...
- spring boot 系列之六:深入理解spring boot的自动配置
我们知道,spring boot自动配置功能可以根据不同情况来决定spring配置应该用哪个,不应该用哪个,举个例子: Spring的JdbcTemplate是不是在Classpath里面?如果是,并 ...