【CDQ分治】[HNOI2010]城市建设
线段树分治+LCT只有80
然后就有了CDQ分治的做法
把不可能在生成树里的扔到后面
把一定在生成树里的扔到并查集里存起来
分治到l=r,修改边权,跑个kruskal就行了
由于要支持撤销,并查集要按秩合并
#include"cstdio"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
const int MAXN=2e4+5;
const int MAXM=5e4+5;
const int INF=1e9;
int n,m,q,t,ct,p;
int f[MAXN],mxdp[MAXN];
long long sum;
long long ans[MAXM];
bool vis[MAXM];
int v[MAXM];
struct rpg{
int ls,nx,ln,id,kd;
}a[MAXM],st[MAXM];
struct vx{
int id,val;
}w[MAXM];
struct fx{
int x,fx,kd;
}stk[MAXM];
int read()
{
int x=0;char ch=getchar();
while(ch<'0'||'9'<ch) ch=getchar();
while('0'<=ch&&ch<='9') x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x;
}
int find(int x){return f[x]==x?x:find(f[x]);}
bool cmp1(rpg a,rpg b){return a.ln<b.ln;}
bool cmp2(rpg a,rpg b){return a.kd<b.kd;}
void un(int fa,int fb)
{
if(mxdp[fa]>mxdp[fb]) swap(fa,fb);
if(mxdp[fa]==mxdp[fb]) stk[++ct]=(fx){fa,fb,1},++mxdp[fb];
else stk[++ct]=(fx){fa,fb,0};
f[fa]=fb;
}
long long calc(int d,int t2)
{
for(int i=1;i<=t;++i){
if(a[i].id==w[d].id){
st[w[d].id].ln=a[i].ln=w[d].val;
break;
}
}sort(a+1,a+t+1,cmp1);
long long s=0;
for(int i=1;i<=t;++i){
int fa=find(a[i].ls),fb=find(a[i].nx);
if(fa!=fb) un(fa,fb),s+=a[i].ln;
}while(ct>t2){
if(stk[ct].kd) --mxdp[stk[ct].fx];
f[stk[ct].x]=stk[ct].x;
--ct;
}return sum+s;
}
void C(int t2)
{
for(int i=1;i<=t;++i) if(vis[a[i].id]) a[i].ln=INF;
sort(a+1,a+t+1,cmp1);
for(int i=1;i<=t&&a[i].ln<INF;++i){
int fa=find(a[i].ls),fb=find(a[i].nx);
if(fa!=fb) un(fa,fb);
else a[i].kd=2;
}sort(a+1,a+t+1,cmp2);
while(t&&a[t].kd) --t;
while(ct>t2){
if(stk[ct].kd) --mxdp[stk[ct].fx];
f[stk[ct].x]=stk[ct].x;
--ct;
}return;
}
void D(int t2)
{
for(int i=1;i<=t;++i) if(vis[a[i].id]) a[i].ln=-INF;
sort(a+1,a+t+1,cmp1);
for(int i=1;i<=t;++i){
int fa=find(a[i].ls),fb=find(a[i].nx);
if(fa!=fb){
un(fa,fb);
if(a[i].ln>-INF) a[i].kd=1,sum+=a[i].ln;
}
}sort(a+1,a+t+1,cmp2);
while(t&&a[t].kd) --t;
while(ct>t2){
if(stk[ct].kd) --mxdp[stk[ct].fx];
f[stk[ct].x]=stk[ct].x;
--ct;
}return;
}
void reD(int t2)
{
while(ct>t2){
if(stk[ct].kd) --mxdp[stk[ct].fx];
f[stk[ct].x]=stk[ct].x;
--ct;
}return;
}
void reC(int t1)
{
for(int i=t+1;i<=t1;++i){
if(a[i].kd==1) sum-=a[i].ln;
a[i].kd=0;
}t=t1;
return;
}
void CDQ(int l,int r)
{
if(l==r){ans[l]=calc(l,ct);return;}
int ctp=t,cmd=ct,mid=l+r>>1;
for(int i=1;i<=t;++i) vis[a[i].id]=0;
for(int i=l;i<=r;++i) vis[w[i].id]=1;
C(cmd),D(cmd);
for(int i=t+1;i<=ctp;++i) if(a[i].kd==1) un(find(a[i].ls),find(a[i].nx));
for(int i=1;i<=t;++i) a[i].ln=st[a[i].id].ln;
CDQ(l,mid),CDQ(mid+1,r);
reC(ctp);reD(cmd);
return;
}
int main()
{
n=read(),t=m=read(),q=read();
for(int i=1;i<=n;++i) f[i]=i;
for(int i=1;i<=m;++i) a[i].ls=read(),a[i].nx=read(),a[i].ln=read(),a[i].id=i,st[i]=a[i];
for(int i=1;i<=q;++i) w[i].id=read(),w[i].val=read();
CDQ(1,q);for(int i=1;i<=q;++i) printf("%lld\n",ans[i]);
return 0;
}
【CDQ分治】[HNOI2010]城市建设的更多相关文章
- 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)
[BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...
- [HNOI2010]城市建设
[HNOI2010]城市建设 玄学cdq O(nlog^2n)的动态最小生成树 其实就是按照时间cdq分治+剪枝(剪掉一定出现和不可能出现的边) 处理[l,r]之间的修改以及修改之后的询问,不能确定是 ...
- 【LG3206】[HNOI2010]城市建设
[LG3206][HNOI2010]城市建设 题面 洛谷 题解 有一种又好想.码得又舒服的做法叫线段树分治+\(LCT\) 但是因为常数过大,无法跑过此题. 所以这里主要介绍另外一种玄学\(cdq\) ...
- Luogu 3206 [HNOI2010]城市建设
BZOJ 2001 很神仙的cdq分治 先放论文的链接 顾昱洲_浅谈一类分治算法 我们考虑分治询问,用$solve(l, r)$表示询问编号在$[l, r]$时的情况,那么当$l == r$的时候 ...
- 洛谷P3206 [HNOI2010]城市建设
神仙题 题目大意: 有一张\(n\)个点\(m\)条边的无向联通图,每次修改一条边的边权,问每次修改之后这张图的最小生成树权值和 话说是不是\(cdq\)题目都可以用什么数据结构莽过去啊-- 这道题目 ...
- BZOJ2001 HNOI2010城市建设(线段树分治+LCT)
一个很显然的思路是把边按时间段拆开线段树分治一下,用lct维护MST.理论上复杂度是O((M+Q)logNlogQ),实际常数爆炸T成狗.正解写不动了. #include<iostream> ...
- P3206 [HNOI2010]城市建设 [线段树分治+LCT维护动态MST]
Problem 这题呢 就边权会在某一时刻变掉-众所周知LCT不支持删边的qwq- 所以考虑线段树分治- 直接码一发 如果 R+1 这个时间修改 那就当做 [L,R] 插入了一条边- 然后删的边和加的 ...
- BZOJ2001 HNOI2010 城市建设
题目大意:动态最小生成树,可以离线,每次修改后回答,点数20000,边和修改都是50000. 顾昱洲是真的神:顾昱洲_浅谈一类分治算法 链接: https://pan.baidu.com/s/1c2l ...
- [HNOI2010] 城市建设_动态最小生成树(Dynamic_MST)
这个题...暴力单次修改\(O(n)\),爆炸... $ $ 不过好在可以离线做 如果可以在 分治询问 的时候把图缩小的话就可以做了 硬着头皮把这个骚东西看完了 $ $ 动态最小生成树 然后,就把它当 ...
随机推荐
- python 跨平台获取网卡信息和本机ip地址
笔者在项目中遇到过获取本机网卡ip的例子,利用python库psutil解决了此问题. def get_netcard(): """获取网卡名称和ip地址 "& ...
- docker容器启动参数
docker run [option] 镜像名 [向启动容器中传入的命令] 常用可选参数说明: -i 表示以“交互模式”运行容器 -t 表示容器启动后会进入其命令行.加入这两个参数后,容器创建就能登录 ...
- js变量提升
JavaScript的函数定义有个特点,它会先扫描整个函数体的语句,把所有申明的变量“提升”到函数顶部: 'use strict'; function foo() { var x = 'Hello, ...
- POJ 2860
#include<iostream> #define MAXN 20 using namespace std; int a_1[MAXN]; int a_2[MAXN]; int main ...
- 12-01 Java Scanner类,Scanner类中的nextLine()产生的换行符问题
分析理解:Scanner sc = new Scanner(System.in); package cn.itcast_01; /* * Scanner:用于接收键盘录入数据. * * 前面的时候: ...
- python高并发?
参考: https://yunsonbai.top/
- 【原创】Dependency Walker
https://zh.wikipedia.org/wiki/Dependency_Walker For situations where the system says it can’t find s ...
- Android_strings.xml显示特殊字符
项目中要在string.xml 中显示特殊符号,如@号冒号等,直接写肯定不行啦..只能考虑使用ASCII码进行显示: @号 @ :号 : 空格 以下为常见的ASCII十进制交换编码: --> ...
- ecshop 安装出错gd_version
678: static function gd_version()
- Node.js 安装及环境配置之 Windows 篇
一.安装环境 1.本机系统:Windows 10 企业版(64位)2.Node.js:node-v8.9.4-x64.msi(64位) 二.安装Node.js步骤 1.下载对应自己系统对应的 Node ...