题目如下:

#include <iostream>
#include <string>
#include <vector> using namespace std; // use this struct to store square subsequence, 4 positions and 1 length
struct SqSb {
// take square subsequence as two subsquence s0 and s1
int s00; // the position of s0's first char
int s01; // the position of s0's last char
int s10;
int s11;
int len;
SqSb() {
s00 = s01 = s10 = s11 = 0;
len = 0;
}
SqSb(int t00, int t01, int t10, int t11, int length) {
s00 = t00;
s01 = t01;
s10 = t10;
s11 = t11;
len = length;
}
}; int maxSqSubLen(const string & str) { int strLen = str.size(); // corner cases
if (strLen < 1) return 0; if (strLen == 2) {
if (str[0] == str[1]) return 2;
else return 0;
}
// corner cases end // dp[i] stores the square subsequence of length (i + 1) * 2
vector<vector<SqSb> > dp;
// dp1 == dp[0] is the initial data
vector<SqSb> dp1; for (int i = 0; i < strLen - 1; ++i) {
char ich = str[i];
for (int j = i + 1; j < strLen; ++j) {
if (ich == str[j]) {
SqSb s(i, i, j, j, 2);
dp1.push_back(s);
}
}
} // there is no duplicate char in this string return
if (dp1.empty()) return 0; dp.push_back(dp1); for (int l = 2; l <= strLen/2; ++l) {
vector<SqSb> dpl;
for (int i = 0; i < dp[l - 2].size(); ++i) {
SqSb si = dp[l - 2][i];
for (int j = 0; j < dp1.size(); ++j) {
SqSb sj = dp1[j];
if (sj.s00 > si.s01 && sj.s00 < si.s10
&& sj.s10 > si.s11) {
SqSb s(si.s00, sj.s00, si.s10, sj.s10, l * 2);
dpl.push_back(s);
}
}
}
if (dpl.empty()) return (l - 1) * 2;
dp.push_back(dpl);
} return strLen/2 * 2;
} int main(int argc, char **argv) { cout << maxSqSubLen(string(argv[1])) << endl; return 0;
}

参考的是 stackoverflow 的一个提问:https://stackoverflow.com/questions/10000226/square-subsequence

题目不难,知道DP的整体流程,但是分析问题的能力差了一点。

[Alg::DP] Square Subsequence的更多相关文章

  1. [Alg::DP] 袋鼠过河

    一道简单的动态规划问题. 题目来源:牛客网 链接:https://www.nowcoder.com/questionTerminal/74acf832651e45bd9e059c59bc6e1cbf ...

  2. [Leetcode221]最大面积 Maximal Square

    [题目] Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's a ...

  3. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  4. BestCoder Round #87 1002 Square Distance[DP 打印方案]

    Square Distance  Accepts: 73  Submissions: 598  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit ...

  5. hdu 1398 Square Coins(简单dp)

    Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Pro ...

  6. Common Subsequence(dp)

    Common Subsequence Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 951  Solved: 374 Description A subs ...

  7. CodeForces 163A Substring and Subsequence dp

    A. Substring and Subsequence 题目连接: http://codeforces.com/contest/163/problem/A Description One day P ...

  8. POJ2533——Longest Ordered Subsequence(简单的DP)

    Longest Ordered Subsequence DescriptionA numeric sequence of ai is ordered if a1 < a2 < ... &l ...

  9. HDU4632:Palindrome subsequence(区间DP)

    Problem Description In mathematics, a subsequence is a sequence that can be derived from another seq ...

随机推荐

  1. Daily Scrumming* 2015.12.17(Day 9)

    一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1077 https://github.com/buaaclubs-team/temp-front/com ...

  2. 对《OA云》作品的分析

    对<OA云>作品的分析 软件描述:<OA云>是一款基于移动端的企业日常事物办公软件,企业人员进入该产品后可以对当天的出勤情况进行签到,系统会自动的识别以及记录下员工的实时签到信 ...

  3. Web项目--------原Oracle数据库的项目同时兼容MySql

    原Oracle数据库的项目同时兼容MySql步骤: (一)修改资源配置文件applicationContext-dataSource.xml的数据库连接 Oracle数据库中加上from dual的原 ...

  4. springboot+mybatis结合使用

    springboot+mybatis结合使用与普通的ssm配置差别不大,但是少了很多的配置,如spring.xml  web.xml,  给程序员减轻了很多负担 首先创建带有mybatis框架的项目 ...

  5. Python爬虫实战:2017中国最好大学排名

    抓取内容: 从最好大学网上抓取中国前10的大学排名.大学名称.总分,并数据格式左对齐. http://www.zuihaodaxue.cn/zuihaodaxuepaiming2017.html 首先 ...

  6. js & parseFloat & toFixed

    js & parseFloat & toFixed https://repl.it/languages/javascript https://repl.it/repls/MintyBa ...

  7. Django_基于模块的单例模式

    基于模块的单例模式  原理: Python 的独有特性 : 模块的导入只能生效一次. 再重复导入只要基于一套环境都是使用的 最初 的那份资源.  示例: 文档结构: # mysingleton.py ...

  8. css 2D转换总结

    CSS中2D转换的形式是这样的: 选择器{ transform:转换函数(参数,参数): } 其中transform(是transform 不是transfrom)定义元素的2D或者3D转换: 2D转 ...

  9. 【AGC006E】 Rotate 3x3

    Description ​ 题目链接 Solution ​ 显然每一列只能一起动,乱动则无解. ​ 对原网格按列黑白染色,显然每一列数只能在相同颜色之间交换,乱动则无解. ​ 之后考虑构造方案. ​ ...

  10. luogu1082 [NOIp2012]同余方程 (扩展欧几里得)

    由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...