in packet sniffer

来源 https://kb.fortinet.com/kb/microsites/search.do?cmd=displayKC&docType=kc&externalId=11186&sliceId=1&docTypeID=DT_KCARTICLE_1_1&dialogID=56212880&stateId=1%200%2056214119

Introduction

All FortiGate units have a powerful packet sniffer on board. If you know tcpdump you should feel comfortable using the FortiGate Sniffer.

See the related article "Packet capture (sniffer) tips" for additional sniffer tips.

Scope : All FortiOS
Note :   Other Fortinet appliances also providing a CLI sniffer : FortiAnalyzer - FortiMail - FortiManager

DMZ

|

|

+-----------+

----internal----| FortiGate |---external-----

+-----------+

Sniffer Basics

The packet sniffer "sits" in the FortiGate and can sniff traffic on a specific Interface or on all Interfaces. There are 3 different Level of Information, also known as Verbose Levels 1 to 3, where verbose 1 shows less information and verbose 3 shows the most information. Verbose 4, 5 and 6 would additionally provide the interface details

Verbose levels in detail:

1: print header of packets
2: print header and data from IP of packets
3: print header and data from Ethernet of packets
4: print header of packets with interface name
5: print header and data from IP of packets with interface name
6: print header and data from Ethernet of packets with interface name

This article walks through some examples and different levels of verbosity to show the different possibilities for debugging.

Basic sniffing command

All Packet sniffing commands start like:

# diag sniffer packet <interface> <'filter'> <verbose> <count> a

Where...

<interface> can be an Interface name or "any" for all Interfaces.
<'filter'> is a very powerful filter functionality which will be described in more detail.<verbose> means the level of verbosity as described already.
<count> the number of packets the sniffer reads before stopping.
a introduced in release 3.0 MR6, this setting allows display of absolute time stamp

Example 1: Simple Trace

Sniff 3 packets of all traffic with verbose Level 4 on internal Interface

# diag sniffer packet internal none 4 3
internal in 192.168.0.1.22 -> 192.168.0.30.1144: psh 2859918764 ack 1949135261
internal in 192.168.0.1.22 -> 192.168.0.30.1144: psh 2859918816 ack 1949135261
internal out 192.168.0.30.1144 -> 192.168.0.1.22: ack 2859918884

As you can see we caught some Packets in the middle of a communication. Because the 192.168.0.1 IP Address uses Port 22 (192.168.0.1.22) we can assume that we've caught some Packets from a running SSH Session. The "none" variable means 'no filter applies', "4" means 'verbose 4' and "3" means 'catch 3 packets and stop'.

Example 2: Simple Trace

Sniff 3 packets of all traffic with verbose Level 4 on Internal interface

# diag sniffer packet internal none 4 3
internal out 192.168.0.30.1156 -> 192.168.0.1.80: syn 2164883624
internal in 192.168.0.1.80 -> 192.168.0.30.1156: syn 3792179542 ack 2164883625
internal out 192.168.0.30.1156 -> 192.168.0.1.80: ack 3792179543

Apparently we caught some more interesting information, just when a TCP session was being set up. 192.168.0.30 tries to connect to 192.168.0.1 on Port 80 with a syn and gets a syn ack back. Finally the session is acknowledged and established after the 3-way TCP handshake.

With information level set to Verbose 4, we see a summary of Source and Destination IP Address, as well as Source and Destination Port. We can also see the corresponding TCP Sequence numbers.

If you don't enter a <count> value, the Sniffer runs forever until you stop it with <CTRL C>

Hint: For further investigation it's always a good idea to log to a file. If you're using Putty (a free SSH client for Windows) you can easily log all Output to a file which you can search/sort/process.

Verbose 5 and Verbose 6 levels:

Verbose 5 contains much more information

1. The IP Header as we've already seen in Verbose 4
2. The Payload of the IP packet itself

An Output of Verbose 5 looks like this:

# diag sniffer packet internal none 5 1
internal in 192.168.0.1.22 -> 192.168.0.30.1144: psh 2867817048 ack 1951061933

0x0000 4510 005c 8eb1 4000 4006 2a6b c0a8 0001 E..\..@.@.*k....
0x0010 c0a8 001e 0016 0478 aaef 6a58 744a d7ad .......x..jXtJ..
0x0020 5018 0b5c 8ab9 0000 9819 880b f465 62a8 P..\.........eb.
0x0030 3eaf 3804 3fee 2555 8deb 24da dd0d c684 >.8.?.%U..$.....
0x0040 08a9 7907 202d 5898 a85c facb 8c0a f9e5 ..y..-X..\......
0x0050 bd9c b649 5318 7fc5 c415 5a59 ...IS.....ZY

Notice the in/ out parameter after internal interface that will confirm the direction of the packet entering or leaving the interface.

Verbose 6, finally, even includes Ethernet (Ether Frame) Information. A script is available (fgt2eth.pl), which will convert a captured verbose 6 output, into a file that can be read and decoded by Ethereal/Wireshark. See the end of this article for details.

Use of absolute time stamp in sniffer trace will report the absolute system time (no time zone) in packet summary:

# diag sniffer packet internal none 4 2 a

2010-06-02 10:23:17.170751 port1 out arp who-has 192.168.1.110 tell 192.168.1.103
2010-06-02 10:23:19.077409 port1 in arp who-has 192.168.1.120 tell 192.168.1.2

Hint: Below is the format that Technical Support will usually request when attempting to analyze a problem as it includes full packet content, as well as absolute time stamp, in order to correlate packets with other system events.

# diag sniffer packet any <'filter'> 6 0 a

Filter Functionality

As already mentioned: diag sniffer includes a powerful filter functionality that will be described here.

FortiOS tells us:

<filter> filter for sniffer
Syntax: '[[src|dst] host<IP1>] [[src|dst] host<IP2>] [[arp|ip|gre|esp|udp|tcp] [port_no]] [[arp|ip|gre|esp|udp|tcp] [port_no]]'

If a second host is specified, only the traffic between the 2 hosts will be displayed.

<filter> flexible logical filters for sniffer (or "none").
For example: To print udp 1812 traffic between forti1 and either forti2 or forti3
'udp and port 1812 and host forti1 and (forti2 or forti3)'

Imagine you only want to sniff the traffic from one PC to another PC. Without Filter the sniffer will display all packets which is far too much and painful to debug.

Example 3: Trace with Filters

To see what's going on between two PCs (or a PC and a FortiGate),(Don't forget to put your filter expressions in single quotes ' ' ):

# diag sniffer packet internal 'src host 192.168.0.130 and dst host 192.168.0.1' 1

192.168.0.130.3426 -> 192.168.0.1.80: syn 1325244087
192.168.0.130.3426 -> 192.168.0.1.80: ack 3483111190
192.168.0.130.3426 -> 192.168.0.1.80: psh 1325244088 ack 3483111190
192.168.0.130.1035 -> 192.168.0.1.53: udp 26
192.168.0.130.1035 -> 192.168.0.1.53: udp 42
192.168.0.130.1035 -> 192.168.0.1.53: udp 42
192.168.0.130 -> 192.168.0.1: icmp: echo request
192.168.0.130.3426 -> 192.168.0.1.80: psh 1325244686 ack 3483111190
192.168.0.130 -> 192.168.0.1: icmp: echo request

Assuming there is a lot of traffic on the wire, this filter command will only display traffic (but all traffic) from Source 192.168.0.130 to Destination 192.168.0.1. It will NOT show traffic to 192.168.0.130 (for example the ICMP reply) because we said ' src host 192.168.0.130 and dst host 192.168.0.1'

As you can see we also captured some other things like ICMP or DNS queries from a PC. If we're just interested in a specific type of traffic (let's say TCP Traffic only) we need to change our filter command slightly like this:

# diag sniffer packet internal 'src host 192.168.0.130 and dst host 192.168.0.1 and tcp' 1

192.168.0.130.3569 -> 192.168.0.1.23: syn 1802541497
192.168.0.1.23 -> 192.168.0.130.3569: syn 4238146022 ack 1802541498
192.168.0.130.3569 -> 192.168.0.1.23: ack 4238146023

Though ICMP (ping) was also running, the trace only shows the TCP part. As we can see the Destination is: 192.168.0.1.23 which is IP 192.168.0.1 on Port 23. Apparently we found a Telnet Session to 192.168.0.1 right during initial setup.

The same the other way around:

# diag sniffer packet internal 'host 192.168.0.130 and icmp' 1

192.168.0.130 -> 192.168.0.1: icmp: echo request
192.168.0.1 -> 192.168.0.130: icmp: echo reply

In this example we're sniffing for ICMP only, to and from 192.168.0.130

Another useful feature is logical combination. Let us assume you want to sniff for ICMP and TCP only (but not for UDP, ARP, etc). You can combine protocols in the following manner:

# diag sniffer packet internal 'host 192.168.0.130 and (icmp or tcp)' 1

This sniff will display all tcp or icmp traffic to and from host 192.168.0.30, in verbose 1 level.

Now we are going to limit the sniffer even more:

We want to sniff traffic between 2 hosts, but only TCP and only port 80.

# diag sniffer packet internal 'host 192.168.0.130 and 192.168.0.1 and tcp port 80' 1

192.168.0.130.3625 -> 192.168.0.1.80: syn 2057246590
192.168.0.1.80 -> 192.168.0.130.3625: syn 3291168205 ack 2057246591
192.168.0.130.3625 -> 192.168.0.1.80: ack 3291168206
192.168.0.130.3625 -> 192.168.0.1.80: psh 2057246591 ack 3291168206
192.168.0.1.80 -> 192.168.0.130.3625: ack 2057247265

A logical "and" is used in this command between 192.168.0.130 and 192.168.0.1 so that only packets containing both these host addresses will be seen.

Even if telnet and ssh is running between the two hosts, we only see port 80 TCP traffic.

Filtered can be used to display packets based on their content, using hexadecimal byte position.

Match TTL = 1
# diagnose sniffer packet port2 "ip[8:1] = 0x01"

Match Source IP address = 192.168.1.2:
# diagnose sniffer packet internal "(ether[26:4]=0xc0a80102)"

Match Source MAC = 00:09:0f:89:10:ea
# diagnose sniffer packet internal "(ether[6:4]=0x00090f89) and (ether[10:2]=0x10ea)"

Match Destination MAC = 00:09:0f:89:10:ea
# diagnose sniffer packet internal "(ether[0:4]=0x00090f89) and (ether[4:2]=0x10ea)"

Match ARP packets only
# diagnose sniffer packet internal "ether proto 0x0806"

TCP or UDP flags can be addressed using the following:

Match packets with RST flag set:
# diagnose sniffer packet internal "tcp[13] & 4 != 0"

Match packets with SYN flag set:
# diagnose sniffer packet internal "tcp[13] & 2 != 0"

Match packets with SYN-ACK flag set:
# diagnose sniffer packet internal "tcp[13] = 18"

Also attached is the fgt2eth.pl script that will convert a verbose level 3 or 6 sniffer output, into a file readable and decodable by Ethereal/Wireshark.

The fgt2eth.exe file is also attached to this article, this file is outdated and is not supported but may provide some guidance.


Note:
 The attached script is provided "as is", it is not supported by Technical Support.

$ ./fgt2eth.pl 
Version : Dec 19 2014
Usage : fgt2eth.pl -in <input_file_name>

Mandatory argument are :
    -in  <input_file>     Specify the file to convert (FGT verbose 3 text file)

Optional arguments are :
    -help                 Display help only
    -version              Display script version and date
    -out <output_file>    Specify the output file (Ethereal readable)
                By default <input_file>.pcap is used
                - will start wireshark for realtime follow-up
    -lines <lines>        Only convert the first <lines> lines
    -demux            Create one pcap file per interface (verbose 6 only)
    -debug                Turns on debug mode

Related Articles
Attachments

======================= End

in packet sniffer的更多相关文章

  1. 【转】蓝牙4.0BLE cc2540 usb-dongle的 SmartRF Packet Sniffer 抓取数据方法--不错

    原文网址:http://blog.csdn.net/mzy202/article/details/32408223 蓝牙4.0BLE cc2540 usb-dongle的 SmartRF Packet ...

  2. 蓝牙4.0BLE cc2540 usb-dongle的 SmartRF Packet Sniffer 抓取数据方法

    蓝牙4.0的开发, 现在真热火的很, 但是很多朋友买了我们出品的cc2540 usb-dongle后, 都反馈说不知道如何抓包, 并且, 即使很多朋友到TI官网论坛去找信息,不少朋友依然是无功而返,实 ...

  3. Develop a Packet Sniffer with libpcap

    Develop a Packet Sniffer with libpcap: http://vichargrave.com/develop-a-packet-sniffer-with-libpcap/

  4. 浅谈原始套接字 SOCK_RAW 的内幕及其应用(port scan, packet sniffer, syn flood, icmp flood)

    一.SOCK_RAW 内幕 首先在讲SOCK_RAW 之前,先来看创建socket 的函数: int socket(int domain, int type, int protocol); domai ...

  5. 蓝牙4.0BLE cc2540 usb-dongle的 SmartRF Packet Sniffer 抓取数据方法 【原创,多图】

    蓝牙4.0BLE cc2540 usb-dongle的 SmartRF Packet Sniffer 抓取数据方法 [原创,多图] spm=a1z10.1.w4004-5319414070.11.Zd ...

  6. Python Ethical Hacking - Packet Sniffer(1)

    PACKET_SNIFFER Capture data flowing through an interface. Filter this data. Display Interesting info ...

  7. Python Ethical Hacking - Packet Sniffer(2)

     Capturing passwords from any computer connected to the same network.  ARP_SPOOF + PACKET_SNIFFER Ta ...

  8. 使用Packet Sniffer抓包和分析(z-stack协议)

    以下内容仅是自己学习总结,可能会有错误,有发现问题的欢迎指正(图片可以自己放大,还是比较清晰的). 1.协调器上电,其他设备均不上电,抓包如下: 通过观察可以发现,协调器建立网络成功后,会以15秒为周 ...

  9. 抓包软件Packet Sniffer的使用

    1. 要用专门的一块zigbee插到底板上,仿真器连到CC Debug接口. 2. 打开软件,按下仿真器的复位键,可以识别到设备. 3. 进行抓包(抓到的是网络中其他节点的信息)

随机推荐

  1. RocEDU.课程设计2018 第六组 第三周进展 博客补交

    RocEDU.课程设计2018第六组 第三周进展 博客补交 小组成员:20155211解雪莹,20155217杨笛,20155227辜彦霖 计划完成任务:完成课设所有内容 实际完成任务:跑通老师uco ...

  2. 20155304 《网络对抗》Exp9 web安全基础实践

    20155304 <网络对抗>Exp9 web安全基础实践 实验后回答问题 (1)SQL注入攻击原理,如何防御 攻击原理:web应用程序对用户输入数据的合法性没有判断,攻击者可以在web应 ...

  3. 20155307《网络对抗》Web安全基础实践

    20155307<网络对抗>Web安全基础实践 基础问题回答 SQL注入攻击原理,如何防御? 原理:SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL ...

  4. 2017-2018-2 20155315《网络对抗技术》免考五:Windows提权

    原理 使用metasploit使目标机成功回连之后,要进一步攻击就需要提升操作权限.对于版本较低的Windows系统,在回连的时候使用getsystem提权是可以成功的,但是对于更高的系统操作就会被拒 ...

  5. Python基础(list和tuple)可变集合和‘不可变’集合

    list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: >>> ...

  6. Node.js 下载路径/微软产品下载路径

    https://nodejs.org/en/ https://www.microsoft.com/en-us/download //微软官方下载地址,可以下载VS2015  SQL 等 微软产品

  7. EZ 2017 12 30 2018noip第二次膜你赛

    去年的比赛了,然而今天才改好. 总体难度适中,有大佬AK. 主要是自己SB第二题没想出来,然后又是可怜的100来分. T1 一道二分+数学的题目. 我们可以二分叫的次数,然后用公式(等差数列,公差都是 ...

  8. vim打开多窗口、多文件之间的切换

    打开多个文件: 一.vim还没有启动的时候: 1.在终端里输入  vim file1 file2 ... filen便可以打开所有想要打开的文件 2.vim已经启动 输入 :e file 可以再打开一 ...

  9. python 优雅地实现插件架构

    近日,决定用 python 实现插件架构,于是上 stackoverflow 逛了一下,在这里发现一段代码,非常喜欢. 提醒各位大侠注意,我对这段代码作了一点小小的改动:原 PLUGINS 是 lis ...

  10. python面试题(四)

    一.数据类型 1.字典 1.1 现有字典 dict={‘a’:24,‘g’:52,‘i’:12,‘k’:33}请按字典中的 value 值进行排序? sorted(dict.items(),key=l ...