一、CRC16校验码的使用

  现选择最常用的CRC-16校验,说明它的使用方法。

  根据Modbus协议,常规485通讯的信息发送形式如下:

  地址 功能码 数据信息 校验码

  1byte 1byte nbyte 2byte

  CRC校验是前面几段数据内容的校验值,为一个16位数据,发送时,低8位在前,高8为最后。

  例如:信息字段代码为: 1011001,校验字段为:1010。

  发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10

  信息字段 校验字段

  接收方:使用相同的计算方法计算出信息字段的校验码,对比接收到的实际校验码,如果相等及信息正确,不相等则信息错误;或者将接受到的所有信息除多项式,如果能够除尽,则信息正确。

二、CRC16校验码计算方法

  常用查表法和计算法。计算方法一般都是:

  (1)、预置1个16位的寄存器值0xFFFF,称此寄存器为CRC寄存器;

  (2)、把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低

  8位相异或,把结果放于CRC寄存器,高八位数据不变;

  (3)、把CRC寄存器的内容右移一位(朝高位)用0填补最高位,并检查右移后的移出位;

  (4)、如果移出位为0:重复第3步(再次右移一位);如果移出位为1,CRC寄存器与一多

  项式(A001)进行异或;

  (5)、重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;

  (6)、重复步骤2到步骤5,进行通讯信息帧下一个字节的处理;

  (7)、将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低

  字节进行交换;

  (8)、最后得到的CRC寄存器内容即为:CRC码。

  以上计算步骤中的多项式A001是8005按位颠倒后的结果。

  查表法是将移位异或的计算结果做成了一个表,就是将0~256放入一个长度为16位的寄存器中的低八位,高八位填充0,然后将该寄存器与多项式0XA001按照上述3、4步骤,直到八位全部移出,最后寄存器中的值就是表格中的数据,高八位、低八位分别单独一个表。

三、CRC16常见几个标准的算法

  CRC16常见的标准有以下几种,被用在各个规范中,其算法原理基本一致,就是在数据的输入和输出有所差异,下边把这些标准的差异列出,并给出C语言的算法实现。

  CRC16_CCITT:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在前,高位在后,结果与0x0000异或

  CRC16_CCITT_FALSE:多项式x16+x12+x5+1(0x1021),初始值0xFFFF,低位在后,高位在前,结果与0x0000异或

  CRC16_XMODEM:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在后,高位在前,结果与0x0000异或

  CRC16_X25:多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或

  CRC16_MODBUS:多项式x16+x15+x5+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0x0000异或

  CRC16_IBM:多项式x16+x15+x5+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0x0000异或

  CRC16_MAXIM:多项式x16+x15+x5+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或

  CRC16_USB:多项式x16+x15+x5+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0xFFFF异或

四、CRC16的算法原理及程序

  1.根据CRC16的标准选择初值CRCIn的值。

  2.将数据的第一个字节与CRCIn高8位异或。

  3.判断最高位,若该位为 0 左移一位,若为 1 左移一位再与多项式Hex码异或。

  4.重复3直至8位全部移位计算结束。

  5.重复将所有输入数据操作完成以上步骤,所得16位数即16位CRC校验码。

  根据算法原理与标准要求就能简单的写出具体程序:

 /**
**************************************************************************************************
* @Brief Single byte data inversion
* @Param
* @DesBuf: destination buffer
* @SrcBuf: source buffer
* @RetVal None
* @Note (MSB)0101_0101 ---> 1010_1010(LSB)
**************************************************************************************************
*/
void InvertUint8(unsigned char *DesBuf, unsigned char *SrcBuf)
{
int i;
unsigned char temp = ; for(i = ; i < ; i++)
{
if(SrcBuf[] & ( << i))
{
temp |= <<(-i);
}
}
DesBuf[] = temp;
} /**
**************************************************************************************************
* @Brief double byte data inversion
* @Param
* @DesBuf: destination buffer
* @SrcBuf: source buffer
* @RetVal None
* @Note (MSB)0101_0101_1010_1010 ---> 0101_0101_1010_1010(LSB)
**************************************************************************************************
*/
void InvertUint16(unsigned short *DesBuf, unsigned short *SrcBuf)
{
int i;
unsigned short temp = ; for(i = ; i < ; i++)
{
if(SrcBuf[] & ( << i))
{
temp |= <<( - i);
}
}
DesBuf[] = temp;
} unsigned short CRC16_CCITT(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0x0000;
unsigned short wCPoly = 0x1021;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
InvertUint8(&wChar, &wChar);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
InvertUint16(&wCRCin, &wCRCin);
return (wCRCin) ;
} unsigned short CRC16_CCITT_FALSE(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0xFFFF;
unsigned short wCPoly = 0x1021;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
return (wCRCin) ;
} unsigned short CRC16_XMODEM(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0x0000;
unsigned short wCPoly = 0x1021;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
return (wCRCin) ;
} unsigned short CRC16_X25(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0xFFFF;
unsigned short wCPoly = 0x1021;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
InvertUint8(&wChar, &wChar);
wCRCin ^= (wChar << ); for(int i = ;i < ;i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
InvertUint16(&wCRCin, &wCRCin);
return (wCRCin^0xFFFF) ;
} unsigned short CRC16_MODBUS(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0xFFFF;
unsigned short wCPoly = 0x8005;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
InvertUint8(&wChar, &wChar);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
InvertUint16(&wCRCin, &wCRCin);
return (wCRCin) ;
} unsigned short CRC16_IBM(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0x0000;
unsigned short wCPoly = 0x8005;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
InvertUint8(&wChar, &wChar);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
InvertUint16(&wCRCin,&wCRCin);
return (wCRCin) ;
} unsigned short CRC16_MAXIM(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0x0000;
unsigned short wCPoly = 0x8005;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
InvertUint8(&wChar, &wChar);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
InvertUint16(&wCRCin, &wCRCin);
return (wCRCin^0xFFFF) ;
} unsigned short CRC16_USB(unsigned char *puchMsg, unsigned int usDataLen)
{
unsigned short wCRCin = 0xFFFF;
unsigned short wCPoly = 0x8005;
unsigned char wChar = ; while (usDataLen--)
{
wChar = *(puchMsg++);
InvertUint8(&wChar, &wChar);
wCRCin ^= (wChar << ); for(int i = ; i < ; i++)
{
if(wCRCin & 0x8000)
{
wCRCin = (wCRCin << ) ^ wCPoly;
}
else
{
wCRCin = wCRCin << ;
}
}
}
InvertUint16(&wCRCin, &wCRCin);
return (wCRCin^0xFFFF) ;
}

来源

【转】crc16几种标准校验算法及c语言代码的更多相关文章

  1. 几种经典排序算法的R语言描述

    1.数据准备 # 测试数组 vector = c(,,,,,,,,,,,,,,) vector ## [] 2.R语言内置排序函数 在R中和排序相关的函数主要有三个:sort(),rank(),ord ...

  2. 几种常见排序算法原理&C语言实现

    一.冒泡排序(以下各法均以从小到大排序为例,定义len为数组array的长度) 原理:比较相邻元素的大小,对于每次循环,按排序的规则把最值移向数组的一端,同时循环次数依次减少. C代码实现 写法一: ...

  3. 无限大整数相加算法的C语言源代码

    忙里偷闲,终于完成了无限大整数相加算法的C语言代码,无限大整数相加算法的算法分析在这里. 500位的加法运行1000次,不打印结果的情况下耗时0.036秒,打印结果的情况下耗时16.285秒. 下面是 ...

  4. Delphi CRC16校验算法实现(转)

    循环冗余码校验英文名称为Cyclical Redundancy Check,简称CRC.它是利用除法及余数的原理来作错误侦测(Error Detecting)的.实际应用时,发送装置计算出CRC值并随 ...

  5. Java CRC16 MODBUS校验算法实现

    /** * CRC校验算法工具类 */ public class CRCUtil { public static String getCRC(String data) { data = data.re ...

  6. 8种主要排序算法的C#实现

    作者:胖鸟低飞 出处:http://www.cnblogs.com/fatbird/ 简介 排序算法是我们编程中遇到的最多的算法.目前主流的算法有8种. 平均时间复杂度从高到低依次是: 冒泡排序(o( ...

  7. 8种主要排序算法的C#实现 (二)

    归并排序 归并排序也是采用“分而治之”的方式.刚发现分治法是一种算法范式,我还一直以为是一种需要意会的思想呢. 不好意思了,孤陋寡闻了,哈哈! 原理:将两个有序的数列,通过比较,合并为一个有序数列.  ...

  8. 常用校验算法CRC、MD5、SHA_转

    1.算法概述 数据摘要算法是密码学算法中非常重要的一个分支,它通过对所有数据提取指纹信息以实现数据签名.数据完整性校验等功能,由于其不可逆性,有时候会被用做敏感信息的加密.数据摘要算法也被称为哈希(H ...

  9. C#校验算法列举

    以下是工作中常用的几种校验算法,后期将不断更新 和校验 /// <summary> /// CS和校验 /// </summary> /// <param name=&q ...

随机推荐

  1. English_word_learning

    这次报名参加了学院的21天打卡活动,说实话,也是想给自己一个积累的平台. 毕竟,真的有时候感觉挺弱的 有的人用了一年考完了四六级,而有人却用四年还未考完. 听到有一位学长因为自己的四级成绩没有达到48 ...

  2. 利用备份技术获取apk本地存储数据

    即使设备没有root,我们也可以通过物理访问设备来获取应用程序的数据,我们还可以通过此方法改变一个应用程序的数据.如果一个应用程序将数据存储在客户端, 使用简单的密码或pin检查,攻击者有可能使用这种 ...

  3. 执行力:Just Do It

    执行力,最最关键的一点就是,立即去做,不要想太多. 当有一件事需要去做的时候,你的大脑肯定是接受到了"某种信号",比如来了一个灵感.受到一点启发.做某件事突然来了兴趣.或者想去探讨 ...

  4. 编译安装php时遇到virtual memory exhausted: Cannot allocate memory

    有时候用vps建站时需要通过编译的方式来安装主机控制面板.对于大内存的VPS来说一般问题不大,但是对于小内存,比如512MB内存的godaddy VPS来说,很有可能会出现问题,因为编译过程是一个内存 ...

  5. python的多继承关系

    python和C++一样,支持多继承.概念虽然容易,但是困难的工作是如果子类调用一个自身没有定义的属性,它是按照何种顺序去到父类寻找呢,尤其是众多父类中有多个都包含该同名属性. class P1 #( ...

  6. Selenium--数据驱动(python)

    前言: 什么是数据驱动? 从它的本意来解释,就是数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变.说人话,其实就是参数化. 本次介绍2种文件驱动:ini文件和yaml文件 一.ini文件 1 ...

  7. 《Linux内核分析》第一周学习笔记

    <Linux内核分析>第一周学习笔记 计算机是如何工作的 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/c ...

  8. LINUX内核分析第二周学习总结——操作系统是如何工作的

    LINUX内核分析第二周学习总结——操作系统是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...

  9. Linux内核分析——第八周学习笔记

    实验作业:进程调度时机跟踪分析进程调度与进程切换的过程 20135313吴子怡.北京电子科技学院 [第一部分]理解Linux系统中进程调度的时机 1.Linux的调度程序是一个叫schedule()的 ...

  10. request.getParameter中文乱码问题解决办法

    new String(request.getParameter("pageNo").getBytes("ISO-8859-1"),"UTF-8&quo ...