题目大意:给定一个有 N 个数组成的序列,在此基础上构建一棵二叉排序树,求每个节点(根节点除外)的父节点的编号是多少。

题解:首先,根据二叉排序树的不稳定性,直接模拟构建二叉排序树肯定会超时,因此需要用其他的数据结构来模拟 BST。在这里可以用平衡树来模拟,即:用一个 \(set\) 来维护这 N 个序列,因为平衡树的旋转功能使得父节点会发生改变,所以需要另外记录下对应的 BST 中,每个节点“本应该”的孩子是谁,即:用两个 \(map\) 来记录下每个节点对应的左右孩子即可。

引理1:BST 的构建是在原树构架的基础上进行的,即:未插入节点前的树中的节点在插入节点之后的相对位置不会发生改变。

引理2:在插入新节点时,该节点一定被插入在其前驱的右孩子或后继的左孩子的位置。

证明过程可以分以下几个步骤:

  1. 证明不可能出现前驱的右孩子和后继的左孩子均有节点的情况。
  2. 证明不可能出现前驱没有右孩子且后继没有左孩子的情况。
  3. 证明前驱和后继的 LCA 应该是这二者之一。

代码如下

#include <bits/stdc++.h>
using namespace std; int n,val;
set<int> s;
map<int,int> ls,rs;
void solve(){
scanf("%d",&val);
s.insert(val);
for(int i=1;i<n;i++){
scanf("%d",&val);
auto it=s.upper_bound(val);
if(it!=s.end()&&ls.find(*it)==ls.end()){
ls[*it]=val;
printf("%d",*it);
}else{
--it;
rs[*it]=val;
printf("%d",*it);
}
putchar(i==n-1?'\n':' ');
s.insert(val);
}
} int main(){
scanf("%d",&n);
solve();
return 0;
}

【CF675D】Tree Construction的更多相关文章

  1. 【HDOJ】【3516】Tree Construction

    DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...

  2. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  3. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  4. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  5. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  6. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  7. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  8. 【BZOJ2654】Tree(凸优化,最小生成树)

    [BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...

  9. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

随机推荐

  1. 在ListBoxItem的样式中的button传参,把当前选中项传递到命令的方法

    原文:在ListBoxItem的样式中的button传参,把当前选中项传递到命令的方法 前端页面: <Style x:Key="ThumbItemStyle" TargetT ...

  2. 复选框、单选框 jquery判断是否选中Demo

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="eachcheckbox.a ...

  3. EZ 2018 05 06 NOIP2018 慈溪中学集训队互测(五)

    享受爆零的快感 老叶本来是让初三的打的,然后我SB的去凑热闹了 TM的T2写炸了(去你妹的优化),T1连-1的分都忘记判了,T3理所当然的不会 光荣革命啊! T1 思维图论题,CHJ dalao给出了 ...

  4. VS中为非控制台程序提供控制台输出窗口

    /************************************************************************/ /* 模块名:ConsoleAdapter 文件名 ...

  5. OLEDB 命令转换组件的用法

    在数据流任务组件中,OLEDB 命令转换组件对输入的每行数据调用TSQL,该组件能够把输入的数据作为参数,因此,该转换组件主要用于运行参数化的查询. 命令转换组件的配置十分简单,只有三个可编辑属性,位 ...

  6. nova状态同步

    服务初始化阶段 nova-compute服务启动时调用manager中的host初始化函数 self.manager.init_host() 在host初始化函数中完成如下操作: #初始化libvir ...

  7. nginx 新增域名访问

    nginx 新增域名访问 1.申请阿里云域名 2.指向阿里云主机 3.配置nginx文件 server { listen 80; server_name zlx.test.com; set $root ...

  8. Kubernetes学习-基础架构

    kubectl是一个Kubernetes提供的客户端工具,是用于操作kubernetes集群的命令行接口,通过利用kubectl的各种命令可以实现各种功能,是在使用kubernetes中非常常用的工具 ...

  9. B1004. 成绩排名

    这一题总算是把C++的重载活学活用了一回,节省了很多脑细胞. #include<bits/stdc++.h> using namespace std; struct student{ st ...

  10. Arcengine效率探究之二——属性的更新(转载)

    http://blog.csdn.net/lk103852503/article/details/6570748 修改一批要素的属性有多种方法,当数据量较大时,若选择不当可能会大大影响速度. 一.IR ...