MT【167】反复放缩
已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$
1)证明:对任意$n\in N^+,a_n<5$
2)证明:不存在$M\le4$,使得对任意$n,a_n<M$

证明:
1)显然$a_{n+1}>a_n,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}<a_n+\dfrac{a_na_{n+1}}{n(n+1)}$
故$\dfrac{1}{a_n}<\dfrac{1}{a_{n+1}}+\dfrac{1}{n(n+1)}$ 累加得:$\dfrac{1}{a_3}<\dfrac{1}{a_n}+\dfrac{1}{3}-\dfrac{1}{n}$
由于$a_1=1,a_2=\dfrac{3}{2},a_3=\dfrac{15}{8}$代入上式得$\dfrac{1}{a_n}\ge \dfrac{1}{n}+\dfrac{1}{5}>\dfrac{1}{5}$.故$a_n<5(n\in N^+)$
2)由(1)$\dfrac{1}{a_n}\ge \dfrac{1}{n}+\dfrac{1}{5},a_n<\dfrac{5n}{n+5},(n\ge3)$
故$a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}<a_n+\dfrac{\frac{5n}{n+5}a_n}{n(n+1)}=\dfrac{n^2+6n+10}{(n+1)(n+5)}a_n$
故$a_n\ge\dfrac{(n+1)(n+5)}{n^2+6n+10}a_{n+1}$
故$a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}\ge a_n+\dfrac{\frac{(n+1)(n+5)}{n^2+6n+10}a_na_{n+1}}{n(n+1)}=a_n+\dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}$
故$\dfrac{1}{a_n}\ge\dfrac{1}{a_{n+1}}+\dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}
\ge\dfrac{1}{a_{n+1}}+\dfrac{17}{20n(n+1)},(n\ge3)$
累加得$\dfrac{1}{a_3}\ge\dfrac{1}{a_n}+\dfrac{17}{20}(\dfrac{1}{3}-\dfrac{1}{n})$
代入$a_3=\dfrac{15}{8}$得,$a_n\ge\dfrac{20n}{5n+17}\rightarrow 4$
故不存在$M\le4$,使得对任意$n,a_n<M$
注:此类题型也较常见,但往往最后一步裂项放缩要观察一下。
MT【167】反复放缩的更多相关文章
- MT【26】ln(1+x)的对数平均放缩
评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.
- MT【198】连乘积放缩
(2018中科大自招最后一题)设$a_1=1,a_{n+1}=\left(1+\dfrac{1}{n}\right)^3(n+a_n)$证明:(1)$a_n=n^3\left(1+\sum\limit ...
- MT【71】数列裂项放缩题
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...
- MT【53】对数平均做数列放缩
[从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...
- MT【22】一道分母为混合型的放缩
评:指数函数增长>幂函数增长>对数函数增长.
- MT【11】对数放缩题
解答:C 评论:这里讲几个背景知识
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- 【转载】jQuery动画连续触发、滞后反复执行解决办法
转载: http://www.cnblogs.com/yuejin/archive/2012/12/18/2822595.html jQuery中slideUp .slideDown.animate等 ...
- for...in也反复执行语句,但它是用来操作对象的
for...in也反复执行语句,但它是用来操作对象的
随机推荐
- day37
今日内容 1.线程池和进程池 2.利用线程池实现套接字并发通信 3.协程(利用模块gevent模块,实现单线程下套接字并发通信) 1.线程池与进程池 要用线程池与进程池,首先要导入concurrent ...
- [Baltic 2011]Lamp BZOJ2346
分析: 建图最短路,比较裸. 我们可以考虑,如果是‘\’那么,左上连右下边权为0,左下连右上边权为1,反之亦然. 卡裸spfa,加点优化能过,我就直接改成的堆优化Dijkstra 附上代码: #inc ...
- 20155227《网络对抗》Exp2 后门原理与实践
20155227<网络对抗>Exp2 后门原理与实践 基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 在非官方网站下载软件时,后门很可能被捆绑在软件中. 攻击者利用欺 ...
- 2017-2018-2 20155315《网络对抗技术》免考五:Windows提权
原理 使用metasploit使目标机成功回连之后,要进一步攻击就需要提升操作权限.对于版本较低的Windows系统,在回连的时候使用getsystem提权是可以成功的,但是对于更高的系统操作就会被拒 ...
- springboot的热部署和dubug
采用了项目聚合,产生一些不同,遇到的问题和解决方法分享下. 项目结构: rebuilder2 -htran 主项目 -htran-api 1.htran.pom <parent> < ...
- 11.10 (上午)开课二个月零六天(ajax基础,ajax做登录)
test.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...
- proftpd启动失败提示unable to determine IP address of “xxx.com”
proftpd启动失败提示unable to determine IP address of “xxx.com”这种proftpd启动失败的原因是无法解析后面主机的IP地址,解决方法是在DNS列表中增 ...
- python语言程序设计2
1, 代码高亮色彩体系 2, 缩进,一行代码开始前的空白区域,表达程序的格式框架 单层缩进,多层缩进 特点 概念,缩进是语法的一部分,缩进不正确的话可能会导致程序运行错误 用处(意义),是表达代码间包 ...
- nvm管理不同版本的node和npm
写在前面 nvm(nodejs version manager)是nodejs的管理工具,如果你需要快速更新node版本,并且不覆盖之前的版本:或者想要在不同的node版本之间进行切换:使用nvm来安 ...
- 浅谈iOS 自动调节文本高度
文字展示是任何GUI开发的一个最常规的编程任务.可能一提及文字我们脑中想到的无非就是 Label 和 Text 这两个关键词,今天我们就谈谈 Label. 无论在 Windows 或者 Web 开发中 ...