题目描述

知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。 ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1。

由于菜肴之间口味搭配的问题,某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如”i 号菜肴'必须'先于 j 号菜肴制作“的限制,我们将这样的限制简写为<i,j>。

现在,酒店希望能求出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:

也就是说,

(1)在满足所有限制的前提下,1 号菜肴”尽量“优先制作;

(2)在满足所有限制,1号菜肴”尽量“优先制作的前提下,2号菜肴”尽量“优先制作;

(3)在满足所有限制,1号和2号菜肴”尽量“优先的前提下,3号菜肴”尽量“优先制作

;(4)在满足所有限制,1 号和 2 号和 3 号菜肴”尽量“优先的前提下,4 号菜肴”尽量“优先制作;

(5)以此类推。

例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。

例2:共5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。

例1里,首先考虑 1,因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号又应”尽量“比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来考虑2,确定最终的制作顺序是 3,4,1,2。

例 2里,首先制作 1是不违背限制的;接下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。 现在你需要求出这个最优的菜肴制作顺序。无解输出”Impossible!“ (不含引号,首字母大写,其余字母小写)

输入输出格式

输入格式:

第一行是一个正整数D,表示数据组数。 接下来是D组数据。 对于每组数据:
第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限制的条目数。
接下来M行,每行两个正整数x,y,表示”x号菜肴必须先于y号菜肴制作“的限制。(注意:M条限制中可能存在完全相同的限制)

输出格式:

输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或者“Impossible!“表示无解(不含引号)。

输入输出样例

输入样例#1:
复制

3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
输出样例#1: 复制

1 5 3 4 2
Impossible!
1 5 2 4 3

说明

【样例解释】

第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于

菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。

100%的数据满足N,M<=100000,D<=3。

Solution:

题干那么长,一句话就是保证先输出1再输出2,然后保证先输出2再输出3的情况……也就是最前面的要先满足,可以导致后面不满足。还有满足题意的输出要求

做法:正向保障1一定在2前面……所以就是反向一定是字典序最大……

所以就是反向连边+拓扑排序,如果同时存在多个可以输出的点记录下最大的,最后倒序输出(因为是反着找的点)

如果不满足所有的点都记录,一定存在环,就可以输出Impossibe了

这题应该主要是难在思维上(我也是看了题解的qwq,代码不难

Code:

 #include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+; int T,m,n;
int head[maxn],cnt=,in[maxn];
struct Edge{
int nxt,to;
}edge[maxn];
int box=,ans[maxn];
priority_queue<int>q; void add(int from,int to){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
head[from]=cnt;
} void work(){
scanf("%d%d",&n,&m);
memset(head,,sizeof(head));
memset(in,,sizeof(in));
cnt=;
for(int i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
add(y,x);in[x]++;
}
while(!q.empty())q.pop();
for(int i=;i<=n;i++){if(in[i]==)q.push(i);}
box=;memset(ans,,sizeof(ans));
while(!q.empty()){
bool k=true;
int u=q.top();q.pop();
ans[++box]=u;
for(int i=head[u];i!=;i=edge[i].nxt){
int v=edge[i].to;
in[v]--;
if(in[v]==)q.push(v);
}
}
if(box<n)printf("Impossible!\n");
else {
for(int i=box;i>=;i--){printf("%d ",ans[i]);}
printf("\n");
}
return;
}
int main(){
scanf("%d",&T);
for(int i=;i<=T;i++){work();}
return ;
}

【题解】 [HNOI2015]菜肴制作 (拓扑排序)的更多相关文章

  1. 【BZOJ4010】[HNOI2015]菜肴制作 拓扑排序

    [BZOJ4010][HNOI2015]菜肴制作 Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高 ...

  2. bzoj 4010: [HNOI2015]菜肴制作 拓扑排序

    题目链接: 题目 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory Limit: 512 MB 问题描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴 ...

  3. 【bzoj4010】[HNOI2015]菜肴制作 拓扑排序+堆

    题目描述 给你一张有向图,问:编号-位置序(即每个编号的位置对应的序列)最小(例如1优先出现在前面,1位置相同的2优先出现在前面,以此类推)的拓扑序是什么? 输入 第一行是一个正整数D,表示数据组数. ...

  4. BZOJ4010[HNOI2015]菜肴制作——拓扑排序+堆

    题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予 1到N的顺序编号,预估质量最高的菜肴编号为1.由于菜肴 ...

  5. [LOJ2114][HNOI2015]-菜肴制作-拓扑排序+贪心

    <题面> 一个蒟蒻的痛苦一天 在今天的节目集训中,麦蒙将带领大家学习9种错误的解题策略 $15\%$算法(看两个就往下走吧) 1> puts("Impossible!&qu ...

  6. 洛谷P3243 [HNOI2015]菜肴制作 拓扑排序+贪心

    正解:拓扑排序 解题报告: 传送门! 首先看到它这个约束就应该要想到拓扑排序辣QwQ 首先想到的应该是用优先队列代替队列,按照节点编号排序 然后也很容易被hack:<5,1> 正解应为5, ...

  7. 洛谷P3243 [HNOI2015]菜肴制作——拓扑排序

    题目:https://www.luogu.org/problemnew/show/P3243 正向按字典序拓扑排序很容易发现是不对的,因为并不是序号小的一定先做: 但若让序号大的尽可能放在后面,则不会 ...

  8. 【luoguP3243】[HNOI2015]菜肴制作--拓扑排序

    题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴 ...

  9. BZOJ4010: [HNOI2015]菜肴制作(拓扑排序 贪心)

    题意 题目链接 Sol 震惊,HNOI竟出NOI原题 直接在反图上贪心一下. // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include& ...

  10. 【HNOI2015】菜肴制作 - 拓扑排序+贪心

    题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴 ...

随机推荐

  1. stm32中assert_param的用法说明

    stm32中assert_param的用法说明   首先是要知道条件判断语句 这个运算符分成三部分: (条件) ? (条件成立执行部分) :(条件不成立执行部分) 就这么简单 例如:a=(x>y ...

  2. Class does not Implement Equals——Code Correctness(代码正确性)

        系列文章目录:     使用Fortify进行代码静态分析(系列文章) class does not implement equals(类未能实现Equals方法)   示例:  protec ...

  3. [CF1007B]Pave the Parallelepiped[组合计数+状态压缩]

    题意 \(t\) 组询问,给你 \(A, B, C\) ,问有多少组三元组 \((a, b, c)\) 满足他们任意排列后有: \(a|A,\ b|B,\ c|C\) . \(A,B,C,t\leq ...

  4. [BZOJ3809]Gty的二逼妹子序列[莫队+分块]

    题意 给出长度为 \(n\) 的序列,\(m\) 次询问,每次给出 \(l,r,a,b\) ,表示询问区间 \([l,r]\) 中,权值在 \([a,b]\) 范围的数的种类数. \(n\leq 10 ...

  5. ElasticSearch入门 第八篇:存储

    这是ElasticSearch 2.4 版本系列的第八篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 E ...

  6. jqGrid 奇淫巧技

    1.新建maven-web项目 结构如图 #GLOBAL_DIGITALMEDIA_SEARCH_grid-table > tbody > tr >td:last-child{ te ...

  7. git和github使用教程

    看官请移步git和github简单教程, 本文是上述链接的截图,担心哪天作者不小心删除了,备一份在自己这里,仅为自己看着方便.侵权请告知

  8. DelayQueue 订单限时支付实例

    1.订单实体 package com.zy.entity; import java.util.Date; import java.util.concurrent.Delayed; import jav ...

  9. centos7 部署mysql-5.7.20

    一.系统环境 系统:CentOS Linux release 7.5 mysqlb进制包:mysql-5.7.20-linux-glibc2.12-x86_64.tar.gz 1)依赖包安装 yum ...

  10. ace -- about

    Built for Code Ace is an embeddable code editor written in JavaScript. It matches the features and p ...