题目描述

知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。 ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1。

由于菜肴之间口味搭配的问题,某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如”i 号菜肴'必须'先于 j 号菜肴制作“的限制,我们将这样的限制简写为<i,j>。

现在,酒店希望能求出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:

也就是说,

(1)在满足所有限制的前提下,1 号菜肴”尽量“优先制作;

(2)在满足所有限制,1号菜肴”尽量“优先制作的前提下,2号菜肴”尽量“优先制作;

(3)在满足所有限制,1号和2号菜肴”尽量“优先的前提下,3号菜肴”尽量“优先制作

;(4)在满足所有限制,1 号和 2 号和 3 号菜肴”尽量“优先的前提下,4 号菜肴”尽量“优先制作;

(5)以此类推。

例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。

例2:共5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。

例1里,首先考虑 1,因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号又应”尽量“比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来考虑2,确定最终的制作顺序是 3,4,1,2。

例 2里,首先制作 1是不违背限制的;接下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。 现在你需要求出这个最优的菜肴制作顺序。无解输出”Impossible!“ (不含引号,首字母大写,其余字母小写)

输入输出格式

输入格式:

第一行是一个正整数D,表示数据组数。 接下来是D组数据。 对于每组数据:
第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限制的条目数。
接下来M行,每行两个正整数x,y,表示”x号菜肴必须先于y号菜肴制作“的限制。(注意:M条限制中可能存在完全相同的限制)

输出格式:

输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或者“Impossible!“表示无解(不含引号)。

输入输出样例

输入样例#1:
复制

3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
输出样例#1: 复制

1 5 3 4 2
Impossible!
1 5 2 4 3

说明

【样例解释】

第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于

菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。

100%的数据满足N,M<=100000,D<=3。

Solution:

题干那么长,一句话就是保证先输出1再输出2,然后保证先输出2再输出3的情况……也就是最前面的要先满足,可以导致后面不满足。还有满足题意的输出要求

做法:正向保障1一定在2前面……所以就是反向一定是字典序最大……

所以就是反向连边+拓扑排序,如果同时存在多个可以输出的点记录下最大的,最后倒序输出(因为是反着找的点)

如果不满足所有的点都记录,一定存在环,就可以输出Impossibe了

这题应该主要是难在思维上(我也是看了题解的qwq,代码不难

Code:

 #include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+; int T,m,n;
int head[maxn],cnt=,in[maxn];
struct Edge{
int nxt,to;
}edge[maxn];
int box=,ans[maxn];
priority_queue<int>q; void add(int from,int to){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
head[from]=cnt;
} void work(){
scanf("%d%d",&n,&m);
memset(head,,sizeof(head));
memset(in,,sizeof(in));
cnt=;
for(int i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
add(y,x);in[x]++;
}
while(!q.empty())q.pop();
for(int i=;i<=n;i++){if(in[i]==)q.push(i);}
box=;memset(ans,,sizeof(ans));
while(!q.empty()){
bool k=true;
int u=q.top();q.pop();
ans[++box]=u;
for(int i=head[u];i!=;i=edge[i].nxt){
int v=edge[i].to;
in[v]--;
if(in[v]==)q.push(v);
}
}
if(box<n)printf("Impossible!\n");
else {
for(int i=box;i>=;i--){printf("%d ",ans[i]);}
printf("\n");
}
return;
}
int main(){
scanf("%d",&T);
for(int i=;i<=T;i++){work();}
return ;
}

【题解】 [HNOI2015]菜肴制作 (拓扑排序)的更多相关文章

  1. 【BZOJ4010】[HNOI2015]菜肴制作 拓扑排序

    [BZOJ4010][HNOI2015]菜肴制作 Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高 ...

  2. bzoj 4010: [HNOI2015]菜肴制作 拓扑排序

    题目链接: 题目 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory Limit: 512 MB 问题描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴 ...

  3. 【bzoj4010】[HNOI2015]菜肴制作 拓扑排序+堆

    题目描述 给你一张有向图,问:编号-位置序(即每个编号的位置对应的序列)最小(例如1优先出现在前面,1位置相同的2优先出现在前面,以此类推)的拓扑序是什么? 输入 第一行是一个正整数D,表示数据组数. ...

  4. BZOJ4010[HNOI2015]菜肴制作——拓扑排序+堆

    题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予 1到N的顺序编号,预估质量最高的菜肴编号为1.由于菜肴 ...

  5. [LOJ2114][HNOI2015]-菜肴制作-拓扑排序+贪心

    <题面> 一个蒟蒻的痛苦一天 在今天的节目集训中,麦蒙将带领大家学习9种错误的解题策略 $15\%$算法(看两个就往下走吧) 1> puts("Impossible!&qu ...

  6. 洛谷P3243 [HNOI2015]菜肴制作 拓扑排序+贪心

    正解:拓扑排序 解题报告: 传送门! 首先看到它这个约束就应该要想到拓扑排序辣QwQ 首先想到的应该是用优先队列代替队列,按照节点编号排序 然后也很容易被hack:<5,1> 正解应为5, ...

  7. 洛谷P3243 [HNOI2015]菜肴制作——拓扑排序

    题目:https://www.luogu.org/problemnew/show/P3243 正向按字典序拓扑排序很容易发现是不对的,因为并不是序号小的一定先做: 但若让序号大的尽可能放在后面,则不会 ...

  8. 【luoguP3243】[HNOI2015]菜肴制作--拓扑排序

    题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴 ...

  9. BZOJ4010: [HNOI2015]菜肴制作(拓扑排序 贪心)

    题意 题目链接 Sol 震惊,HNOI竟出NOI原题 直接在反图上贪心一下. // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include& ...

  10. 【HNOI2015】菜肴制作 - 拓扑排序+贪心

    题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴 ...

随机推荐

  1. 保存网格(mesh)到磁盘上

    Unity提供了很方便的工具来保存mesh之类的,下面的代码挂在GameObject上后,按下F键能把mesh(该GameObject必须有mesh组件)保存到磁盘的Assets目录下.在磁盘上是.a ...

  2. 20155320 Exp6 信息搜集与漏洞扫描

    20155320 Exp6 信息搜集与漏洞扫描 [实验后回答问题] (1)哪些组织负责DNS,IP的管理. 全球根服务器均由美国政府授权的ICANN统一管理,负责全球的域名根服务器.DNS和IP地址管 ...

  3. 20155333 《网络对抗》 Exp7 网络欺诈防范

    20155333 <网络对抗> Exp7 网络欺诈防范 基础问题 通常在什么场景下容易受到DNS spoof攻击? 公共网络 在日常生活工作中如何防范以上两种攻击方法? DNS欺骗攻击是很 ...

  4. linux下使用软连接之案例二

           在笔者的上一篇文章介绍过怎么通过linux的软连接在不修改上传代码的情况下,将上传到项目路径下的图片改为上传到项目外面,防止重新部署后图片被删除了.同时还可以直接通过类似访问静态资源的方 ...

  5. IIS发布问题

    下午发布一个IIS ,出现一个很奇葩的问题,在本地跑代码运行都正常,但是发布到IIS上后 访问提示: CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framewo ...

  6. Android开发——断点续传原理以及实现

    0.  前言 在Android开发中,断点续传听起来挺容易,在下载一个文件时点击暂停任务暂停,点击开始会继续下载文件.但是真正实现起来知识点还是蛮多的,因此今天有时间实现了一下,并进行记录.本文原创, ...

  7. 使用nginx很卡之strace命令

    一.strace命令常用参数 strace -tt -T -v -f -e trace= -p -tt 在每行输出的前面,显示毫秒级别的时间 -T 显示每次系统调用所花费的时间 -v 对于某些相关调用 ...

  8. stl源码剖析 详细学习笔记 算法(2)

    //---------------------------15/03/29---------------------------- //****************************set相 ...

  9. 浅析java构造函数前的访问限定符问题

    曾经一直有个问题困扰着我,我一直以为构造函数前面不能加任何东西,但偶然间看到了一本书上写的代码中,构造函数前加了public限定符,心里很是疑惑,构造函数前加毛访问限定符啊??!  在网上查了很多资料 ...

  10. Asp.net MVC Razor常见问题及解决方法(转载>云中客)

    没有经验的童鞋就是这样磕磕碰碰出来的经验. 1,Datatype的错误提示消息无法自定义 这也许是Asp.net MVC的一个Bug.ViewModel中定义了DataType为Date字段: 1 2 ...