BZOJ4830 [Hnoi2017]抛硬币 【扩展Lucas】
题目链接
题解
当\(a = b\)时,我们把他们投掷硬币的结果表示成二进制,发现,当\(A\)输给\(B\)时,将二进制反转一下\(A\)就赢了\(B\)
还要除去平局的情况,最后答案就是
\]
当\(a \neq b\)时,有些状态可能翻转后还是\(A\)赢\(B\),需要加上这部分
\sum\limits_{i = 0}^{b} \sum\limits_{j = 1}^{a - b - 1}{b \choose i} {a \choose i + j}
&= \sum\limits_{j = 1}^{a - b - 1} \sum\limits_{i = 0}^{b} {b \choose b - i} {a \choose i + j} \\
&= \sum\limits_{j = 1}^{a - b - 1} {a + b \choose b + j} \\
&= \sum\limits_{j = b + 1}^{a - 1} {a + b \choose j} \\
\end{aligned}
\]
答案是
\]
除\(2\)的处理,因为组合数是对称的,所以只算一半
如果中间单独剩一个,一定可以被\(2\)整除,处理因子时减去一个即可
由于要模\(10^{K}\),组合数的计算用扩展\(Lucas\)
此题非常卡常,要使用扩展\(Lucas\)的一些优化
1.预处理阶乘
2.当\(p\)的幂次大于\(k\)时直接返回\(0\)
3.没了
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<cstdio>
#include<vector>
#include<queue>
#include<ctime>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (LL i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2000005,maxm = 100005,INF = 0x3f3f3f3f;
int K,pr[2],pk[2],P,fac[2][maxn],now,ans;
LL A,B;
void init(){
pr[0] = 2; pr[1] = 5; pk[0] = pk[1] = P = fac[0][0] = fac[1][0] = 1;
REP(i,K) pk[0] *= 2,pk[1] *= 5,P *= 10;
for (LL i = 1; i < pk[0]; i++)
if (i % 2) fac[0][i] = 1ll * fac[0][i - 1] * i % pk[0];
else fac[0][i] = fac[0][i - 1];
for (LL i = 1; i < pk[1]; i++)
if (i % 5) fac[1][i] = 1ll * fac[1][i - 1] * i % pk[1];
else fac[1][i] = fac[1][i - 1];
}
inline int qpow(int a,LL b,int p){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % p)
if (b & 1) re = 1ll * re * a % p;
return re;
}
inline void exgcd(int a,int b,int&d ,int& x,int& y){
if (!b){d = a; x = 1; y = 0;}
else exgcd(b,a % b,d,y,x),y -= (a / b) * x;
}
inline int inv(int n,int p){
int d,x,y; exgcd(n,p,d,x,y);
return (x % p + p) % p;
}
int Fac(LL n,int pk,int p){
if (!n) return 1;
return 1ll * qpow(fac[now][pk - 1],n / pk,pk) * fac[now][n % pk] % pk * Fac(n / p,pk,p) % pk;
}
int C(LL n,LL m,int pk,int p,bool f){
LL k = 0;
for (LL i = n; i; i /= p) k += i / p;
for (LL i = m; i; i /= p) k -= i / p;
for (LL i = n - m; i; i /= p) k -= i / p;
if (p == 2 && f) k--;
if (k >= 9) return 0;
now = (p == 5);
LL a = Fac(n,pk,p),b = Fac(m,pk,p),c = Fac(n - m,pk,p),ans;
ans = a * inv(b,pk) % pk * inv(c,pk) % pk;
if (p == 5 && f) ans = 1ll * ans * inv(2,pk) % P;
ans = ans * qpow(p,k,pk) % pk;
return ans * (P / pk) % P * inv(P / pk,pk) % P;
}
int exlucas(LL n,LL m,bool f){
if (m > n) return 0;
int re = 0;
re = (re + C(n,m,pk[0],pr[0],f)) % P;
re = (re + C(n,m,pk[1],pr[1],f)) % P;
return re;
}
int main(){
//double t = clock();
K = 9; init();
while (~scanf("%lld%lld%d",&A,&B,&K)){
ans = qpow(2,A + B - 1,P);
if (A == B) ans = ((ans - exlucas(A + B,A,1)) % P + P) % P;
else {
for (LL i = ((A + B) >> 1) + 1; i < A; i++){
ans = (ans + exlucas(A + B,i,0)) % P;
}
if ((A + B) % 2 == 0) ans = (ans + exlucas(A + B,(A + B) >> 1,1)) % P;
}
int md = qpow(10,K,INF); ans %= md;
while (ans < md / 10) putchar('0'),md /= 10;
printf("%d\n",ans);
}
//cerr << (clock() - t) / CLOCKS_PER_SEC << endl;
return 0;
}
BZOJ4830 [Hnoi2017]抛硬币 【扩展Lucas】的更多相关文章
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- [AH2017/HNOI2017]抛硬币(扩展lucas)
推式子+exlucas. 题意: 小 A 和小 B 是一对好朋友,两个人同时抛 b 次硬币,如果小 A 的正面朝上的次数大于小 B 正面朝上的次数,则小 A 获胜. 小 A 决定在小 B 没注意的时候 ...
- 洛谷P3726 [AH2017/HNOI2017]抛硬币(组合数+扩展Lucas)
题面 传送门 题解 果然--扩展\(Lucas\)学了跟没学一样-- 我们先考虑\(a=b\)的情况,这种情况下每一个\(A\)胜的方案中\(A\)和\(B\)的所有位上一起取反一定是一个\(A\)败 ...
- [luogu3726 HNOI2017] 抛硬币 (拓展lucas)
传送门 数学真的太优秀了Orz 数据真的太优秀了Orz 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月, ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
随机推荐
- 【本地服务器】json-server搭建本地https服务器(windows)
(一)用json-server搭建简单的服务器 (搭建出来的服务器地址为localhost:3000) 1.新建Mockjson文件夹,进入该文件夹目录,运行命令 npm install -g jso ...
- 树上三角形 BZOJ3251
分析: 模拟赛T3,其实很水,当时出于某些原因,没有去写这道题... len>46必定有解 为了满足不是三角形,那么斐波那契数列是最优选择,而斐波那契数列的第46项超过了2^31-1,所以超过4 ...
- Intel 面试(就不该报外企,英语是硬伤)
1 自我介绍(用英文) 啊啊啊,能不能用中文啊,最好用英文,蒙了.... 2 你对硬件了解吗,对X86系统了解吗,知道CPU是怎么处理读一个数据的吗,说说cpu从读一个数据,到内存怎么进行处理? 说的 ...
- 网络对抗技术 2017-2018-2 20152515 Exp2 后门原理与实践
1.实验内容 (1)使用netcat获取主机操作Shell,cron启动 (0.5分) 关于netcat:是一个底层工具,进行基本的TCP UDP数据收发.常被与其他工具结合使用,起到后门的作用. 相 ...
- python 回溯法 子集树模板 系列 —— 6、排课问题
问题 某乡村小学有六个年级,每个年级有一个班,共六个班. 周一到周五,每天上6节课,共计30节课. 开设的课程 一年级:语(9)数(9)书(2)体(2)美(2)音(2)德(2)班(1)安(1) 二年级 ...
- Hadoop开发第6期---HDFS的shell操作
一.HDFS的shell命令简介 我们都知道HDFS 是存取数据的分布式文件系统,那么对HDFS 的操作,就是文件系统的基本操作,比如文件的创建.修改.删除.修改权限等,文件夹的创建.删除.重命名等. ...
- Hadoop框架
1.Hadoop的整体框架 Hadoop由HDFS.MapReduce.HBase.Hive和ZooKeeper等成员组成,其中最基础最重要元素为底层用于存储集群中所有存储节点文件的文件系统HDFS( ...
- cocos2d-x学习之路(三)——精灵与动作
这里我们来看看所有游戏引擎中都会出现的一个重要的概念——精灵
- FTP地址
访问不了FTP的同学可以试试用IPv6 地址2001:da8:203:ed5:CEB2:55FF:FE8B:ED1来访问,用户名密码不变.
- Linux内核分析第一周总结
冯诺依曼体系结构 储存程序计算机工作模型 硬件 程序员 CPU当作for循环: IP: 16位计算机:IP 32位计算机:eIP 64位计算机:rIP X86汇编基础 X86的CPU寄存器 X86的C ...