【agc002f】Leftmost Ball(动态规划)

题面

atcoder

洛谷

题解

我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色,所以无论何时,\(0\)号颜色的数量不能少于其他颜色的数量。

可以设状态\(f[i][j]\)表示前面一共放了\(i\)个\(0\)号颜色的球,而一共出现了\(j\)种其他颜色的球,根据上面的东西,可以知道\(i\ge j\)。每次转移我们分成两种考虑。第一种就直接在后面接一个\(0\)号颜色的球,这个不需要考虑任何决策,直接转移即可,也就是\(f[i][j]+=f[i-1][j]\)。另外一种转移是选择一共新的颜色,抛去前面已经放好的\(0\)号颜色的前,抛去当前位置放下一个当前颜色的球,那么还需要在后面选择\(k-2\)个位置来放这些球,而后面剩下的空位个数显然是可以算的。首先还剩下\(n-i\)个\(0\)号颜色的球没有放,所以提供\(n-i\)个空位,前面一共只出现了\(j-1\)种颜色,所以还有\((n-j+1)*(k-1)\)个空位,但是当前的位置被钦定放这种新的颜色,所以还要减少一个位置。

也就是转移长成这个样子:

\[f[i][j]=f[i-1][j]+C_{(n-i)+(n-j+1)*(k-1)-1}^{k-2}*f[i][j-1]*(n-j+1)
\]

时间复杂度\(O(nk)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 2010
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,k,mx,f[MAX][MAX];
int jc[MAX*MAX],jv[MAX*MAX],inv[MAX*MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();k=read();mx=n*k;
if(k==1){puts("1");return 0;}
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=mx;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=mx;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=mx;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
f[0][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<=i;++j)
{
add(f[i][j],f[i-1][j]);
if(j)add(f[i][j],1ll*f[i][j-1]*(n-j+1)%MOD*C((n-i)+(n-j+1)*(k-1)-1,k-2)%MOD);
}
printf("%d\n",f[n][n]);
return 0;
}

【agc002f】Leftmost Ball(动态规划)的更多相关文章

  1. AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html 题目传送门 - AGC002F 题意 给定 $n,k$ ,表示有 $n\times k$ ...

  2. AGC002F Leftmost Ball

    题目传送门 Description \(n\)种颜色的球,每种\(k\)个,\((n,k\leq 2000)\)将\(n\cdot k\)个球排成一排,把每种颜色最左边的那个涂成白色(初始不含白色), ...

  3. AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...

  4. 【AGC 002F】Leftmost Ball

    Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...

  5. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  6. ATcoder 2000 Leftmost Ball

    Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...

  7. 【AGC002F】Leftmost Ball DP 数学

    题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...

  8. 【agc002f】Leftmost Ball

    题目大意 有n种颜色,每种k个球.将这些球任意排列,将每种颜色中最前面的一个求涂成白色(就是n+1种颜色),求最终的排列的方案的个数. 解题思路 考虑如何计算不会算重, 按颜色顺序,每次往排列插入k个 ...

  9. AGC002 F - Leftmost Ball

    貌似哪里讲过这题..总之当时掉线了(理解能力又差水平又低选手的日常).. 看看题目,应该是DP. 尝试了几次换状态,毫无思路.那我们就来继续挖掘性质吧...为了更直观,我们令第i个出现的球颜色就是i( ...

随机推荐

  1. Java IO 文件

    在java应用程序中,文件是一种常用的数据源或者存储数据的媒介.所以这一小节将会对Java中文件的使用做一个简短的概述.这里只提供一些必要的知识点. 通过Java IO读文件 如果你需要在不同端之间读 ...

  2. 【chrome】安装证书并配置为受信任网站连接(windows)

    当出现网站连接非私密连接不受信任时,可添加证书crt文件到系统证书里设置为受信任 1.chrome设置中, 高级-- 管理证书 2.选择  受信任的根证书颁发机构 -- 导入 3.下一步  找到所需要 ...

  3. 20155331《网络对抗》 Exp9 Web安全基础

    20155331<网络对抗> Exp9 Web安全基础 实验过程 WebGoat 在终端中输入java -jar webgoat-container-7.0.1-war-exec.jar开 ...

  4. 20155333 《网络对抗》 Exp6 信息搜集与漏洞扫描

    20155333 <网络对抗> Exp6 信息搜集与漏洞扫描 基础问题 哪些组织负责DNS,IP的管理? 全球根服务器均由美国政府授权的ICANN统一管理,负责全球的域名根服务器.DNS和 ...

  5. 20155339 Exp4 恶意代码分析

    20155339 Exp4 恶意代码分析 实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什么方法来监控 ...

  6. Could not obtain transaction-synchronized Session for current thread原因及解决方案

            在开发中,碰到到了Could not obtain transaction-synchronized Session for current thread异常,因此特意记录下. 一.问 ...

  7. POJ 1789&&2485&&1258&&3026

    这个真的太水了——MST专辑. 如果不会MST的两种算法的同学可以出门右转了. 大致讲一下,第一题我是用Prim+堆优化的(毕竟点比较多),后面三题用的是Kruskal(习惯打,而且并查集常数实在小) ...

  8. CSS 背景实例

    CSS 背景属性属性 描述background 简写属性,作用是将背景属性设置在一个声明中.background-attachment 背景图像是否固定或者随着页面的其余部分滚动.background ...

  9. 阿里云配置ssl证书

    一.申请证书和下载证书(阿里云申请) 二.在nginx服务器上配置ssl证书 1.检查服务器是否安装openssl 2.在nginx conf 文件夹创建 cret 文件,放置证书 [root@web ...

  10. 小白之selenium+python关于cookies绕开登录2

    首先,由于新开始在博客园中写随笔,可能在内容的布局方面就不太懂,导致布局很丑,各位见谅,但是字还是原来的那字,内容还是原来的内容,少了点包装, 下面是对cookie的扩展知识 1.配置文件存储在哪里? ...