洛谷 P1309 瑞士轮 解题报告
P1309 瑞士轮
题目背景
在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。
本题中介绍的瑞士轮赛制,因最早使用于 18951895 年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折中,既保证了比赛的稳定性,又能使赛程不至于过长。
题目描述
\(2×N\)名编号为\(1-2N\)的选手共进行\(R\)轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。
每轮比赛的对阵安排与该轮比赛开始前的排名有关:第1名和第2名、第3名和第4名、……、第2K - 1名和第2K名、…… 、第2N−1名和第2N名,各进行一场比赛。每场比赛胜者得1分,负者得0分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。
现给定每个选手的初始分数及其实力值,试计算在R轮比赛过后,排名第Q的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。
输入输出格式
输入格式:
第一行是三个正整数N,R,Q ,每两个数之间用一个空格隔开,表示有2×N名选手、R轮比赛,以及我们关心的名次Q 。
第二行是2×N 个非负整数\(s_1, s_2, …, s_{2N}\) ,每两个数之间用一个空格隔开,其中\(s_i\),表示编号为\(i\)的选手的初始分数。 第三行是\(2×N\)个正整数\(w_1 , w_2 , …, w_{2N}\),每两个数之间用一个空格隔开,其中\(w_i\)表示编号为\(i\)的选手的实力值。
输出格式:
一个整数,即\(R\)轮比赛结束后,排名第\(Q\)的选手的编号。
数据范围
对于30%的数据,\(1≤N≤100\) ;
对于50%的数据,\(1≤N≤10,000\) ;
对于100% 的数据, \(1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s_1, s_2, …, s_{2N}≤10^8,1 ≤w_1, w_2 , …, w_{2N}≤ 10^8\)
一上来估计了一下复杂度看看高性能的标签,\(O(2*N*Q*log_2(2*N))\),直接一顿sort上去。。额60分呢。。
抱怨了一下想了一会儿点开了题解。。
注意到胜利的人分数加了只后属于胜利的人的一方的相对位置不会改变,同理失败的一方也是。
联想到归并排序的合并,我们这时候只需要\(O(N)\)的复杂度就可以重新拍好序了。
#include <cstdio>
#include <algorithm>
const int N=100010;
struct node
{
int num,score,w;
bool friend operator <(node n1,node n2)
{
if(n1.score==n2.score) return n1.num<n2.num;
return n1.score>n2.score;
}
bool friend operator >(node n1,node n2)
{
if(n1.score==n2.score) return n1.num<n2.num;
return n1.score>n2.score;
}
}a[N<<1],b[N<<1];
int n,r,q;
void merge()
{
int l1=1,l2=(n>>1)+1,cnt=0;
while(l1<=(n>>1)&&l2<=n)
{
if(b[l2]>b[l1])
a[++cnt]=b[l2++];
else
a[++cnt]=b[l1++];
}
while(l1<=(n>>1))
a[++cnt]=b[l1++];
while(l2<=n)
a[++cnt]=b[l2++];
}
int main()
{
scanf("%d%d%d",&n,&r,&q);
n<<=1;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].score);
a[i].num=i;
}
for(int i=1;i<=n;i++)
scanf("%d",&a[i].w);
for(int i=1;i<=r;i++)
{
if(i==1) std::sort(a+1,a+1+n);
else merge();
int cnt1=0,cnt2=n>>1;
for(int j=1;j<=n;j+=2)
{
if(a[j].w>a[j+1].w)
a[j].score++,b[++cnt1]=a[j],b[++cnt2]=a[j+1];
else
a[j+1].score++,b[++cnt2]=a[j],b[++cnt1]=a[j+1];
}
}
merge();
printf("%d\n",a[q].num);
return 0;
}
2018.6.18
洛谷 P1309 瑞士轮 解题报告的更多相关文章
- 洛谷P1309 瑞士轮(归并排序)
To 洛谷.1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平, ...
- NOIP2011 普及组 T3 洛谷P1309 瑞士轮
今天题做太少,放道小题凑数233 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公 ...
- 洛谷 P1309 瑞士轮
题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...
- 洛谷P1309——瑞士轮(归并排序)
https://www.luogu.org/problem/show?pid=1309#sub 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点 ...
- 洛谷P1309 瑞士轮
传送门 题目大意: 2*n个人,有初始的比赛分数和实力值. 每次比赛前总分从大到小排序,总分相同编号小的排在前面. 每次比赛是1和2比,3和4比,5和6比. 实力值大的获胜得1分. 每次比赛前排序确定 ...
- 洛谷 - P1309 - 瑞士轮 - 归并排序
https://www.luogu.org/problemnew/show/P1309 一开始写的直接快排没想到真的TLE了. 想到每次比赛每个人前移的量不会很多,但是不知从哪里开始优化. 搜索一下原 ...
- 洛谷P1309 瑞士轮——题解
题目传送 思路非常简单,只要开始时把结构体排个序,每次给赢的加分再排序,共r次,最后再输出分数第q大的就行了. (天真的我估错时间复杂度用每次用sort暴力排序结果60分...)实际上这道题估算时间复 ...
- 洛谷 P1309 瑞士轮 题解
每日一题 day4 打卡 Analysis 暴力+快排(其实是归并排序) 一开始天真的以为sort能过,结果光荣TLE,由于每次只更改相邻的元素,于是善于处理随机数的快排就会浪费很多时间.于是就想到归 ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
随机推荐
- python之Django实现商城从0到1
dailyfresh-B2Cdailyfresh mall based on B2C model 基于B2C的天天生鲜商城 项目托管地址:https://github.com/Ylisen/daily ...
- POJ1080
一道字符串DP,然而不需要状压之类的玄学操作 题目大意:给你两个串,由'A','C','G','T'组成,现在你可以在这两个串中的某些位置插入'-',最终要使得它们的长度相等 给出两个字符匹配时的匹配 ...
- EZ 2018 03 30 NOIP2018 模拟赛(六)
链接:http://211.140.156.254:2333/contest/67 转眼间上次加回来的Rating又掉完了. 这次不知为何特别水,T1想了一段时间没想出来弃了,导致后面心态炸了. T2 ...
- debian系统下改语言设置
debian系统下改语言设置 安装debian 的时候选择了中文zh_CN_UTF-8,然后进系统后想换成en_US_UTF-8 可以使用一下命令选择:找到需要的语言 确定即可 dpkg-reconf ...
- 11.8 开课二个月零四天 (Jquery取属性值,做全选,去空格)
1.jquery取复选框的值 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "htt ...
- Linux 学习日记 1
这是我第一次系统地学习Linux,希望通过这个学习日记收获一些东西把-- @_@ Grub - 启动管理器 在启动时让用户选择要启动的系统.(但是windows比较霸道--重装windows后会将 ...
- JVM技术周报第2期
JVM技术周报第2期 JVM技术周报分享JVM技术交流群的讨论内容,由群内成员整理归纳而成.如果你有兴趣入群讨论,请关注「Java技术精选」公众号,通过右下角菜单「入群交流」加我好友,获取入群详情. ...
- ASP.NET Core采用Web Deploy方式发布到 Windows Server 2012 IIS上
小白一枚,租个服务器,发布下网站,满足下好奇心,讲的粗糙,请大家谅解哈~ 1.配置服务器环境.这部分网上教程比较多. (1)开启IIS,参考其他博客的,担心的话,将Web服务器(IIS)全选哈~ (2 ...
- 实战重现隐藏在A标签_blank下的危险漏洞,简略说明noopener的作用
前几日,在看阮一峰老师的博客文章中,发现了这么一篇 .标题为 <target = "_blank" 的危险性(英文)>.这篇文章同事看过之后因为不理解其中的危险之处,念 ...
- 蓝牙BLE实用教程(转载)
欢迎使用 小书匠(xiaoshujiang)编辑器,您可以通过 设置 里的修改模板来改变新建文章的内容. 1.蓝牙BLE常见问答 Q: Smart Ready 和 Smart 以及传统蓝牙之间是什么关 ...