BZOJ1005:[HNOI2008]明明的烦恼(组合数学,Prufer)
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
Solution
要写高精度和质因数分解。
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N (3009)
#define MAX_L 10009
using namespace std; int n,m,rem,d,ans[N],cnt[N]; void Divide(int x,int opt)
{
for (int i=; i<=sqrt(x); ++i)
while (x%i==) x/=i,cnt[i]+=opt;
if (x>) cnt[x]+=opt;
} void Mul(int *a,int b)
{
int g=;
for (int i=; i<=a[]; ++i)
a[i]=a[i]*b+g,g=a[i]/,a[i]%=;
while (g) a[]++,a[a[]]=g%,g/=;
} int main()
{
ans[]=ans[]=;
scanf("%d",&n); rem=n-;
for (int i=; i<=n-; ++i) Divide(i,);
for (int i=; i<=n; ++i)
{
scanf("%d",&d);
if (!d && n>) {puts(""); return ;}
if (d==-) {++m; continue;}
if ((rem=rem-(d-))<) {puts(""); return ;}
for (int j=; j<=d-; ++j) Divide(j,-);
}
if (n==)
{
if (d==- || d==) puts("");
else puts("");
return ;
}
for (int i=; i<=rem; ++i) Divide(i,-);
for (int i=; i<=rem; ++i) Divide(m,);
for (int i=; i<=n; ++i)
for (int j=; j<=cnt[i]; ++j)
Mul(ans,i);
for (int i=ans[]; i>=; --i)
printf("%d",ans[i]);
}
BZOJ1005:[HNOI2008]明明的烦恼(组合数学,Prufer)的更多相关文章
- bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...
- BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)
每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...
- [bzoj1005][HNOI2008][明明的烦恼] (高精度+prufer定理)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...
- 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)
[BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...
- [HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)
prufer序列 定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 描述 eg 将 ...
- bzoj1005 [HNOI2008]明明的烦恼
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3032 Solved: 1209 Description ...
- BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...
- 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4981 Solved: 1941 Description ...
随机推荐
- [android] 轮播图-滑动图片标题焦点
谷歌提供的v4包,ViewPager 在布局文件中,先添加<android.support.v4.view.ViewPager/>控件,这个只是轮播的区域 在布局文件中,布置标题描述部分 ...
- Java基础——collection接口
一.Collection接口的定义 public interfaceCollection<E>extends iterable<E> 从接口的定义中可以发现,此接口使用了泛型 ...
- JVM调优的总结
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64为操作 ...
- 撩课-Web架构师养成系列第一篇
前言 Web架构师养成系列共15篇,每周更新一篇,主要分享.探讨目前大前端领域(前端.后端.移动端)企业中正在用的各种成熟的.新的技术.部分文章也会分析一些框架的底层实现,让我们做到知其然知其所以然. ...
- Springmvx拦截html出现406解决以及Server Tomcat v8.0 Server at localhost failed to start 问题解决方法
问题是这样的:环境是SSM框架,在配置好的框架里想请求一个html,结果406了,406就是HTTP协议状态码的一种,表示无法使用请求的特性来响应请求的网页.一般指客户端浏览器不接受所请求页面的MIM ...
- Django REST framework基础:版本、认证、权限、限制
1 认证.权限和限制 2 认证 2.1 自定义Token认证 2.1.1 表 2.1.2 定义一个登录视图: 2.1.3 定义一个认证类 2.1.4 视图级别认证 2.1.5 全局级别 ...
- _rqy's Code Style for OI
_rqy's Code Style for OI Inspired by Menci's Code Style for OI 本文介绍_rqy的OI中的代码规范.其来源主要为_rqy的长期积累及参考G ...
- 洛谷P4198 楼房重建(线段树)
题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...
- BZOJ4827: [Hnoi2017]礼物(FFT 二次函数)
题意 题目链接 Sol 越来越菜了..裸的FFT写了1h.. 思路比较简单,直接把 \(\sum (x_i - y_i + c)^2\) 拆开 发现能提出一坨东西,然后与c有关的部分是关于C的二次函数 ...
- offsetTop 实现滚动条内内容定位
js代码: var _parent_top = document.getElementsByClassName('parent')[0].offsetTop;var _phase_top = docu ...