题面

在平面上有n个点(n≤50),每个点用一对整数坐标表示。例如:当n=4时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用k个矩形(1≤k≤4)全部覆盖,矩形的边平行于坐标轴。当k=2时,可用如图二的两个矩形S1,s2覆盖,81,S2面积和为4。问题是当n个点坐标和k给出后,怎样才能使得覆盖所有点的k个矩形的面积之和为最小呢?

约定:覆盖一个点的矩形面积为0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

题意

有n个点,找k个矩形包含所有点,使k个矩形和面积和最小。

题解

这道题刚拿到手里的时候是挺棘手的,但是我们看数据范围的大小,是可以暴力枚举的,所以我们可以尝试一下暴力枚举。

建图操作

  1. maps用来存图

  2. ss用来存构建的矩形

    • 立flag来统计这种矩形是否建过

    • 数据最大是4块矩形,可以开小数组

struct maps
{
int x,y;
} mapp[51];
struct ss
{
int l,r,u,d;
bool flag;
} p[5];

判断操作

  1. judge函数枚举四种不成立的情况

  2. in函数判断范围,便于书写judge函数

bool in(ss a, int x, int y)
{
if (x>=a.l&&x<=a.r&&y>=a.d&&y<=a.u) return 1;
return 0;
} bool judge(ss a, ss b)
{
if (in(a,b.l,b.u)) return 1;
if (in(a,b.l,b.d)) return 1;
if (in(a,b.r,b.u)) return 1;
if (in(a,b.r,b.d)) return 1;
return 0;
}

dfs操作

  1. 构建好m个矩形

  2. 计算面积和

  3. 每次存最小值

  4. 搜完结束

void dfs(int num)
{
int value=0;
for (int i=1; i<=m; i++)
{
if (p[i].flag)
{
for (int j=i+1; j<=m; j++)
if (judge(p[i],p[j])) return;
}
value+=(p[i].r-p[i].l)*(p[i].u-p[i].d);
} if (value>=ans) return; if (num>n){
ans=value;
return;
} for (int i=1; i<=m; i++)
{
ss tmp=p[i];
if (p[i].flag==0)
{
p[i].flag=1;
p[i].l=p[i].r=mapp[num].x;
p[i].u=p[i].d=mapp[num].y;
dfs(num+1); p[i]=tmp;
break;
}
else
{
p[i].r=max(p[i].r,mapp[num].x);
p[i].l=min(p[i].l,mapp[num].x);
p[i].u=max(p[i].u,mapp[num].y);
p[i].d=min(p[i].d,mapp[num].y);
dfs(num+1);
p[i]=tmp;
}
}
}

代码

#include<cstdio>
#include<iostream>
using namespace std; struct maps
{
int x,y;
} mapp[51];
struct ss
{
int l,r,u,d;
bool flag;
} p[5]; int n,m,ans=0x7f7f7f7f; bool in(ss a, int x, int y)
{
if (x>=a.l&&x<=a.r&&y>=a.d&&y<=a.u) return 1;
return 0;
} bool judge(ss a, ss b)
{
if (in(a,b.l,b.u)) return 1;
if (in(a,b.l,b.d)) return 1;
if (in(a,b.r,b.u)) return 1;
if (in(a,b.r,b.d)) return 1;
return 0;
} void dfs(int num)
{
int value=0;
for (int i=1; i<=m; i++)
{
if (p[i].flag)
{
for (int j=i+1; j<=m; j++)
if (judge(p[i],p[j])) return;
}
value+=(p[i].r-p[i].l)*(p[i].u-p[i].d);
} if (value>=ans) return; if (num>n){
ans=value;
return;
} for (int i=1; i<=m; i++)
{
ss tmp=p[i];
if (p[i].flag==0)
{
p[i].flag=1;
p[i].l=p[i].r=mapp[num].x;
p[i].u=p[i].d=mapp[num].y;
dfs(num+1); p[i]=tmp;
break;
}
else
{
p[i].r=max(p[i].r,mapp[num].x);
p[i].l=min(p[i].l,mapp[num].x);
p[i].u=max(p[i].u,mapp[num].y);
p[i].d=min(p[i].d,mapp[num].y);
dfs(num+1);
p[i]=tmp;
}
}
} int main(void)
{
scanf("%d%d",&n,&m);
for (int i=1; i<=n; i++) scanf("%d%d",&mapp[i].x,&mapp[i].y); dfs(1);
printf("%d",ans); return 0;
}

题解 P1034 【矩形覆盖】的更多相关文章

  1. 洛谷P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...

  2. 洛谷 P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1​(1,11,1),p_2p2​( ...

  3. 洛谷 - P1034 - 矩形覆盖 - dfs

    https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...

  4. [NOIP2002] 提高组 洛谷P1034 矩形覆盖

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  5. 洛谷——P1034 矩形覆盖

    https://www.luogu.org/problem/show?pid=1034 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的 ...

  6. P1034 矩形覆盖

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  7. luoguP1034 矩形覆盖 x

    P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...

  8. C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解

    面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...

  9. 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solve ...

  10. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

随机推荐

  1. SQL Server ——用 join on 连接多个表

    select * from table1 inner join table2 on table1.id=table2.id 其实 INNER JOIN ……ON的语法格式可以概括为: FROM ((( ...

  2. 【模板】 ST表

    某dalao的代码 void ST(int n) { ; i <= n; i++) dp[i][] = A[i]; ; ( << j) <= n; j++) { ; i + ( ...

  3. elasticsearch6.7 05. Document APIs(2)Index API

    Single document APIs Index API Get API Delete API Update API Multi-document APIs Multi Get API Bulk ...

  4. 撩课-Web大前端每天5道面试题-Day32

    1.module.export.import是什么,有什么作用? module.export.import是ES6用来统一前端模块化方案的设计思路和实现方案. export.import的出现统一了前 ...

  5. Centos 7 安装后设置

    1.宽带连接 终端: nm-connection-editor 添加:DSL 另外一篇:Centos7宽带连接 2.输入法设置 设置-->区域和语言--> + -->搜索chines ...

  6. K8s-Demo实现

     Kubernates的基础界面 常用的操作    将创建好的yaml文件通过Create按钮创建所需资源项目. Dashbord:   可以通过Dashbord查看集群详情:cpu.memory.f ...

  7. POJ2406(SummerTrainingDay10-I KMP)

    Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 50036   Accepted: 20858 D ...

  8. 【读书笔记】iOS-网络-优化请求性能

    一,度量网络性能 1,网络带宽 用于描述无线网络性能的最常见度量指标就是带宽.在数字无线通信中,网络带宽可以描述为两个端点之间的通信通道每秒钟可以传输的位数.现代无线网络所能提供的理论带宽是很高的.不 ...

  9. 看这一篇就够了,css选择器知识汇总

    对大多技术人员来说都比较熟悉CSS选择器,举一例子来说,假设给一个p标签增加一个类(class),可是执行后该class中的有些属性并没有起作用.通过Firebug查看,发现没有起作用的属性被覆盖了, ...

  10. Vue入门(二)之数据绑定

    Vue官网: https://cn.vuejs.org/v2/guide/forms.html#基础用法 [入门系列] (一)  http://www.cnblogs.com/gdsblog/p/78 ...