题意:给定n个点,然后在每个点在一个正方形的上边或者下边的中点,并且所有的正方形等大且不能重叠。求正方形最大的边长是多少。

思路:很明显的二分边长+判定。不过判定要用到2-sat,算是2-sat的入门题吧。

所谓的2-sat,就是对于若干个bool不等式,然后对于会互相干扰(即不能同时成立的),连边处理,然后对于每一块枚举一个点的值,判断是否可行。出现冲突即无解。具体看代码吧。

下面2-sat部分是LRJ的模板,写的挺清晰的。。

 /*
* Author: Yzcstc
* Created Time: 2014/3/8 13:40:50
* File Name: Poj2296.cpp
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<ctime>
#define M0(x) memset(x, 0, sizeof(x))
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define red(i, a, b) for (int i = (a); i >= (b); --i)
#define PB push_back
#define Inf 0x3fffffff
#define eps 1e-8
#define maxn 500
typedef long long LL;
using namespace std;
struct TwoSat{
int n;
vector<int> G[maxn * ];
bool mark[maxn * ];
int S[maxn * ], c;
bool dfs(int x){ // 搜索一组解
if (mark[x^]) return false; //出现冲突
if (mark[x]) return true;
mark[x] = true;
S[c++] = x;
for (int i = ; i < G[x].size(); ++i)
if (!dfs(G[x][i])) return false;
return true;
} void init(int n){
this->n = n;
for (int i = ; i < * n; ++i)
G[i].clear();
memset(mark, , sizeof(mark));
} void add_clause(int x, int xv, int y, int yv){
x = x * + xv;
y = y * + yv; //x,y不能同时存在,那么如果选了y,合法解必定要选x^1
G[x^].push_back(y);
G[y^].push_back(x);
} bool solve(){
for (int i = ; i < n * ; i += )
if (!mark[i] && !mark[i+]){
c = ;
if (!dfs(i)){ //枚举2种取值都无解
while (c > ) mark[S[--c]] = false;
if (!dfs(i+)) return false;
}
}
return true;
}
} Sat; int n, X[], Y[], T; void init(){
scanf("%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d", &X[i], &Y[i]);
} bool check(int r){
Sat.init(n);
for (int i = ; i < n; ++i)
for (int j = i + ; j < n; ++j) if (i != j){ //分类讨论冲突情况
if (Y[i] < Y[j]){
if (Y[j] - Y[i] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[j] - Y[i] < * r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[j] - Y[i] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
}
if (Y[i] > Y[j]){
if (Y[i] - Y[j] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[i] - Y[j] < * r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[i] - Y[j] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
}
if (Y[i] == Y[j]){
if (abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
}
}
return Sat.solve();
} void solve(){
int l = , r = , mid;
int cnt = , ans = ;
while (l <= r){ //二分答案
mid = (l + r) >> ;
if (check(mid)) { ans = mid, l = mid + ;}
else r = mid - ;
}
printf("%d\n",ans);
} int main(){
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
scanf("%d", &T);
while (T--){
init();
solve();
}
fclose(stdin); fclose(stdout);
return ;
}
 

Poj2296的更多相关文章

  1. POJ-2296 Map Labeler 2sat

    题目链接:http://poj.org/problem?id=2296 二分+2sat,每个点的上下两个方向为2sat的两个状态. //STATUS:C++_AC_16MS_536KB #includ ...

  2. POJ2296二分2sat

    题意:       给n个点,每个点必须在一个正方形上,可以在正方向上面边的中点或者是下面边的中点,正方形是和x,y轴平行的,而且所有的点的正方形的边长一样,并且正方形不能相互重叠(边相邻可以),问满 ...

  3. OJ题目分类

    POJ题目分类 | POJ题目分类 | HDU题目分类 | ZOJ题目分类 | SOJ题目分类 | HOJ题目分类 | FOJ题目分类 | 模拟题: POJ1006 POJ1008 POJ1013 P ...

  4. POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat 二分)

    POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat ...

  5. 关于2-sat的建图方法及解决方案

    转载增减: https://blog.csdn.net/qq_24451605/article/details/47126143 https://blog.csdn.net/u012915516/ar ...

  6. 2-Sat小结

    关于2-sat,其实就是一些对于每个问题只有两种解,一般会给出问题间的关系,比如and,or,not等关系,判定是否存在解的问题.. 具体看http://blog.csdn.net/jarjingx/ ...

  7. 专题训练之2-sat

    推荐几篇博客:https://blog.csdn.net/JarjingX/article/details/8521690 研究总结2-sat问题 https://blog.csdn.net/wher ...

随机推荐

  1. epoll机制:epoll_create、epoll_ctl、epoll_wait、close

      在Linux的网络编程中,很长的时间都在使用select来做事件触发.在linux新的内核中,有了一种替换它的机制,就是epoll.相比于select,epoll最大的好处在于它不会随着监听fd数 ...

  2. Tech 2 doesn’t system for H2 above 2007

    I purchased my Tech2 from obd2tool.com and it operates excellent. Can not definitely compare softwar ...

  3. redis的五种存储类型的具体用法

    String 类型操作 string是redis最基本的类型,而且string类型是二进制安全的.意思是redis的string可以包含任何数据.比如jpg图片或者序列化的对象 $redis-> ...

  4. vue 浏览器页面刷新时执行一段代码

    当刷新(浏览器刷新)页面的时候,重置到首页(或其他页面)纯js的是window.onload()但是vue几乎不会用到这个,vue所有的是生命周期那么我们可以根据生命周期来实现这个beforeCrea ...

  5. 使用jackson美化输出json/xml

    转载:http://www.cnblogs.com/xiwang/ 如何使用jackson美化输出json/xml 1.美化POJO序列化xml 下面将POJO列化为xml并打印. Person pe ...

  6. mysql数据库的安装和基本使用

    一.数据库安装配置 1)数据库的概念 .数据库相关概念 数据库服务器(本质就是一个台计算机,该计算机之上安装有数据库管理软件的服务端) 数据库管理管理系统RDBMS(本质就是一个C/S架构的套接字软件 ...

  7. TryXXX模式(深入理解c#)

    .NET有几个模式很容易根据所涉及的方法名称来识别.例如,BeginXXX和EndXXX暗示着一个异步操作.TryXXX模式的用途在.net1.1升级到2.0期间进行了扩展.他是针对以下情况设计的:有 ...

  8. 异常处理(异常解析器) 和 对于Properties类型的属性的配置

    在程序运行中,有可能因为用户的不当操作,发生异常.. 在springmvc中可以根据不同的异常配置不同的处理方式 1.例如出现 这个类型异常 org.springframework.web.multi ...

  9. Mysql 数据库修改datadir和调整默认引擎要注意的问题

    数据库更改 datadir 默认位置: 首先前面的基础操作我就不多说了,无非是复制mysqldata目录,然后修改 my.conf 配置文件 datadir 的 路径地址.然后重启mysql.这里可能 ...

  10. CHAPITRE II

    J'ai ainsi vécu seul, sans personne avec qui parler véritablement, jusqu'à une panne[pan][机]故障 dans ...