1. Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal)
  2. Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavukcuoglu)
  3. Pylearn2 - Pylearn2 is a library designed to make machine learning research easy.
  4. Blocks- A Theano framework for training neural networks
  5. Tensorflow - TensorFlow™ is an open source software library for numerical computation using data flow graphs.
  6. MXNet - MXNet is a deep learning framework designed for both efficiency and flexibility.
  7. Caffe -Caffe is a deep learning framework made with expression, speed, and modularity in mind.Caffe is a deep learning framework made with expression, speed, and modularity in mind.
  8. Lasagne- Lasagne is a lightweight library to build and train neural networks in Theano.
  9. Keras- A theano based deep learning library.
  10. Deep Learning Tutorials – examples of how to do Deep Learning with Theano (from LISA lab at University of Montreal)
  11. DeepLearnToolbox – A Matlab toolbox for Deep Learning (from Rasmus Berg Palm)
  12. Cuda-Convnet – A fast C++/CUDA implementation of convolutional (or more generally, feed-forward) neural networks. It can model arbitrary layer connectivity and network depth. Any directed acyclic graph of layers will do. Training is done using the back-propagation algorithm.
  13. Deep Belief Networks. Matlab code for learning Deep Belief Networks (from Ruslan Salakhutdinov).
  14. RNNLM- Tomas Mikolov’s Recurrent Neural Network based Language models Toolkit.
  15. RNNLIB-RNNLIB is a recurrent neural network library for sequence learning problems. Applicable to most types of spatiotemporal data, it has proven particularly effective for speech and handwriting recognition.
  16. matrbm. Simplified version of Ruslan Salakhutdinov’s code, by Andrej Karpathy (Matlab).
  17. deeplearning4j- Deeplearning4J is an Apache 2.0-licensed, open-source, distributed neural net library written in Java and Scala.
  18. Estimating Partition Functions of RBM’s. Matlab code for estimating partition functions of Restricted Boltzmann Machines using Annealed Importance Sampling (from Ruslan Salakhutdinov).
  19. Learning Deep Boltzmann MachinesMatlab code for training and fine-tuning Deep Boltzmann Machines (from Ruslan Salakhutdinov).
  20. The LUSH programming language and development environment, which is used @ NYU for deep convolutional networks
  21. Eblearn.lsh is a LUSH-based machine learning library for doing Energy-Based Learning. It includes code for “Predictive Sparse Decomposition” and other sparse auto-encoder methods for unsupervised learning. Koray Kavukcuoglu provides Eblearn code for several deep learning papers on this page.
  22. deepmat- Deepmat, Matlab based deep learning algorithms.
  23. MShadow - MShadow is a lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA. The goal of mshadow is to support efficient, device invariant and simple tensor library for machine learning project that aims for both simplicity and performance. Supports CPU/GPU/Multi-GPU and distributed system.
  24. CXXNET - CXXNET is fast, concise, distributed deep learning framework based on MShadow. It is a lightweight and easy extensible C++/CUDA neural network toolkit with friendly Python/Matlab interface for training and prediction.
  25. Nengo-Nengo is a graphical and scripting based software package for simulating large-scale neural systems.
  26. Eblearn is a C++ machine learning library with a BSD license for energy-based learning, convolutional networks, vision/recognition applications, etc. EBLearn is primarily maintained by Pierre Sermanet at NYU.
  27. cudamat is a GPU-based matrix library for Python. Example code for training Neural Networks and Restricted Boltzmann Machines is included.
  28. Gnumpy is a Python module that interfaces in a way almost identical to numpy, but does its computations on your computer’s GPU. It runs on top of cudamat.
  29. The CUV Library (github link) is a C++ framework with python bindings for easy use of Nvidia CUDA functions on matrices. It contains an RBM implementation, as well as annealed importance sampling code and code to calculate the partition function exactly (from AIS labat University of Bonn).
  30. 3-way factored RBM and mcRBM is python code calling CUDAMat to train models of natural images (from Marc’Aurelio Ranzato).
  31. Matlab code for training conditional RBMs/DBNs and factored conditional RBMs (from Graham Taylor).
  32. mPoT is python code using CUDAMat and gnumpy to train models of natural images (from Marc’Aurelio Ranzato).
  33. neuralnetworks is a java based gpu library for deep learning algorithms.
  34. ConvNet is a matlab based convolutional neural network toolbox.

Theano

http://deeplearning.net/software/theano/

code from: http://deeplearning.net/

Deep Learning Tutorial notes and code

https://github.com/lisa-lab/DeepLearningTutorials

code from: lisa-lab

A Matlab toolbox for Deep Learning

https://github.com/rasmusbergpalm/DeepLearnToolbox

code from: RasmusBerg Palm

deepmat

Matlab Code for Restricted/Deep BoltzmannMachines and Autoencoder

https://github.com/kyunghyuncho/deepmat

code from: KyungHyun Cho http://users.ics.aalto.fi/kcho/

Training a deep autoencoder or a classifieron MNIST digits

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

code from: Ruslan Salakhutdinov and GeoffHinton

CNN - Convolutional neural network class

http://www.mathworks.cn/matlabcentral/fileexchange/24291

Code from: matlab

Neural Network for Recognition ofHandwritten Digits (CNN)

http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi

cuda-convnet

A fast C++/CUDA implementation ofconvolutional neural networks

http://code.google.com/p/cuda-convnet/

matrbm

a small library that can train RestrictedBoltzmann Machines, and also Deep Belief Networks of stacked RBM's.

http://code.google.com/p/matrbm/

code from: Andrej Karpathy

Exercise  from UFLDL Tutorial:

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

and tornadomeet’s bolg: http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/

and https://github.com/dkyang/UFLDL-Tutorial-Exercise

Conditional Restricted Boltzmann Machines

http://www.cs.nyu.edu/~gwtaylor/publications/nips2006mhmublv/code.html

from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/

Factored Conditional Restricted BoltzmannMachines

http://www.cs.nyu.edu/~gwtaylor/publications/icml2009/code/index.html

from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/

Marginalized Stacked Denoising Autoencodersfor Domain Adaptation

http://www1.cse.wustl.edu/~mchen/code/mSDA.tar

code from: http://www.cse.wustl.edu/~kilian/code/code.html

Tiled Convolutional Neural Networks

http://cs.stanford.edu/~quocle/TCNNweb/pretraining.tar.gz

http://cs.stanford.edu/~pangwei/projects.html

tiny-cnn:

A C++11 implementation of convolutionalneural networks

https://github.com/nyanp/tiny-cnn

myCNN

https://github.com/aurofable/18551_Project/tree/master/server/2009-09-30-14-33-myCNN-0.07

Adaptive Deconvolutional Network Toolbox

http://www.matthewzeiler.com/software/DeconvNetToolbox2/DeconvNetToolbox.zip

http://www.matthewzeiler.com/

Deep Learning手写字符识别C++代码

http://download.csdn.net/detail/lucky_greenegg/5413211

from: http://blog.csdn.net/lucky_greenegg/article/details/8949578

convolutionalRBM.m

A MATLAB / MEX / CUDA-MEX implementation ofConvolutional Restricted Boltzmann Machines.

https://github.com/qipeng/convolutionalRBM.m

from: http://qipeng.me/software/convolutional-rbm.html

rbm-mnist

C++ 11 implementation of Geoff Hinton'sDeep Learning matlab code

https://github.com/jdeng/rbm-mnist

Learning Deep Boltzmann Machines

http://web.mit.edu/~rsalakhu/www/code_DBM/code_DBM.tar

http://web.mit.edu/~rsalakhu/www/DBM.html

Code provided by Ruslan Salakhutdinov

Efficient sparse coding algorithms

http://web.eecs.umich.edu/~honglak/softwares/fast_sc.tgz

http://web.eecs.umich.edu/~honglak/softwares/nips06-sparsecoding.htm

Linear Spatial Pyramid Matching UsingSparse Coding for Image Classification

http://www.ifp.illinois.edu/~jyang29/codes/CVPR09-ScSPM.rar

http://www.ifp.illinois.edu/~jyang29/ScSPM.htm

SPAMS

(SPArse Modeling Software) is anoptimization toolbox for solving various sparse estimation problems.

http://spams-devel.gforge.inria.fr/

sparsenet

Sparse coding simulation software

http://redwood.berkeley.edu/bruno/sparsenet/

fast dropout training

https://github.com/sidaw/fastdropout

http://nlp.stanford.edu/~sidaw/home/start

Deep Learning of Invariant Features viaSimulated Fixations in Video

http://ai.stanford.edu/~wzou/deepslow_release.tar.gz

http://ai.stanford.edu/~wzou/

Sparse filtering

http://cs.stanford.edu/~jngiam/papers/NgiamKohChenBhaskarNg2011_Supplementary.pdf

k-means

http://www.stanford.edu/~acoates/papers/kmeans_demo.tgz

others:

http://deeplearning.net/software_links/

deeplearning 源码收集的更多相关文章

  1. 【Android源代码下载】收集整理android界面UI效果源码

    在Android开发中,Android界面UI效果设计一直都是很多童鞋关注的问题,今天给大家分享下大神收集整理的多个android界面UI效果,都是源码,都是干货,贡献给各位网友! 话不多说,直接上效 ...

  2. 原生JS研究:学习jquery源码,收集整理常用JS函数

    原生JS研究:学习jquery源码,收集整理常用JS函数: 1. JS获取原生class(getElementsByClass) 转自:http://blog.csdn.net/kongjiea/ar ...

  3. 简单理解 OAuth 2.0 及资料收集,IdentityServer4 部分源码解析

    简单理解 OAuth 2.0 及资料收集,IdentityServer4 部分源码解析 虽然经常用 OAuth 2.0,但是原理却不曾了解,印象里觉得很简单,请求跳来跳去,今天看完相关介绍,就来捋一捋 ...

  4. nGrinder对监控机器收集自定义数据及源码分析

    转载:https://blog.csdn.net/neven7/article/details/50782451 0.背景 性能测试工具nGrinder支持在无需修改源码的情况下,对目标服务器收集自定 ...

  5. java8学习之Collector源码分析与收集器核心

    之前已经对流在使用上已经进行了大量应用了,也就是说对于它的应用是比较熟悉了,但是比较欠缺的是对于它底层的实现还不太了解,所以接下来准备大量通过阅读官方的javadoc反过来加深对咱们已经掌握这些知识更 ...

  6. 2020了你还不会Java8新特性?(五)收集器比较器用法详解及源码剖析

    收集器用法详解与多级分组和分区 为什么在collectors类中定义一个静态内部类? static class CollectorImpl<T, A, R> implements Coll ...

  7. webpack源码-依赖收集

    webpack源码-依赖收集 version:3.12.0 程序主要流程: 触发make钩子 Compilation.js 执行EntryOptionPlugin 中注册的make钩子 执行compi ...

  8. 【Vue源码学习】依赖收集

    前面我们学习了vue的响应式原理,我们知道了vue2底层是通过Object.defineProperty来实现数据响应式的,但是单有这个还不够,我们在data中定义的数据可能没有用于模版渲染,修改这些 ...

  9. jQuery源码分析学习--资料收集--更新中

    1.逐行分析jQuery源码的奥秘 - 网易云课堂  http://study.163.com/course/courseMain.htm?courseId=465001#/courseDetail? ...

随机推荐

  1. The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time zone问题解决

    从错误即可知道是时区的错误,因此只要将时区设置为你当前系统时区即可 因此使用root用户登录mysql,按照如下图所示操作即可. 把时区设置为所在地时区(即东八区的时区)后,再连接数据库就可以了

  2. Netty Reator(三)Reactor 模型

    Netty Reator(三)Reactor 模型 Netty 系列目录 (https://www.cnblogs.com/binarylei/p/10117436.html) 本文介绍 DC Sch ...

  3. 解决SecureCRT超时自动断开的问题

    http://blog.csdn.net/hcwzq/article/details/7944941. http://discuzx.sinaapp.com/mediawiki-chapter.htm ...

  4. 失踪的7(P1590&NOIP水题测试(2017082301))

    题目链接:失踪的7 水题,不解释. #include<bits/stdc++.h> using namespace std; int main(){ int t; scanf(" ...

  5. css固宽截取字符串

    width:200px; white-space:nowrap; word-break:keep-all; overflow:hidden; text-overflow:ellipsis; 移动端支持 ...

  6. 2018.12.30 poj3734 Blocks(生成函数)

    传送门 生成函数入门题. 按照题意构造函数: 对于限定必须是出现偶数次的颜色:1+x22!+x44!+...=ex+e−x21+\frac {x^2}{2!}+\frac {x^4}{4!}+...= ...

  7. 2018.10.31 vijos1052贾老二算算术(高斯消元)

    传送门 高斯消元模板题. 写的时候反了sbsbsb错误消元的时候除数和被除数反了. 所以把板子贴上来压压惊. 代码: #include<bits/stdc++.h> using names ...

  8. warning: rpmts_HdrFromFdno: Header V3 RSA/SHA256 Signature, key ID fd431d51: NOKEY

    问题: yum安装软件时候报如下错误: warning: rpmts_HdrFromFdno: Header V3 RSA/SHA256 Signature, key ID fd431d51: NOK ...

  9. lf-8.4 数据的增删改

    MySQL数据操作: DML 在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作,包括 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现数据的删除 ...

  10. 开启笔记本win7的虚拟热点笔记本变成wifi

    工具/原料 windows 7电脑一台 步骤/方法 1 开启windows 7的隐藏功能:虚拟WiFi和SoftAP(即虚拟无线AP),就可以让电脑变成无线路由器,实现共享上网,节省网费和路由器购买费 ...