洛谷P2261 [CQOI2007] 余数求和 [数论分块]
余数求和
题目背景
数学题,无背景
题目描述
给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29
输入输出格式
输入格式:
两个整数n k
输出格式:
答案
输入输出样例
10 5
29
说明
30%: n,k <= 1000
60%: n,k <= 10^6
100% n,k <= 10^9
分析:
之前没怎么写过数论分块(蒟蒻并不会莫比乌斯反演),于是做道题练下手。
因为$a\%b=a-b*\lfloor \frac{a}{b}\rfloor$,所以我们所求的式子$\sum^n_{i=1}k\mod i$可以转化为$n*k-\sum^n_i{i*\lfloor\frac{k}{i}\rfloor}$。
和式的部分就可以用整除分块来做,复杂度就是$O(\sqrt{n})$的。
Code:
//It is made by HolseLee on 7th Nov 2018
//Luogu.org P2261
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
ll n,k,ans; int main()
{
cin>>n>>k;
ans=n*k;
for(ll l=,r; l<=n; l=r+) {
if( l<=k ) r=min(k/(k/l),n);
else r=n;
ans-=(r-l+)*(r+l)*(k/l)/;
}
cout<<ans<<'\n';
return ;
}
洛谷P2261 [CQOI2007] 余数求和 [数论分块]的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
随机推荐
- 洛谷 P1144 最短路计数 解题报告
P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...
- svn cleanup
SVN 本地更新时,由于一些操作中断更新,如磁盘空间不够,用户取消. 可能会造成本地文件被锁定的情况.一般出现这种情况的解决方法: 1.可以使用SVN clean up来清除锁定. 2.如果不是本目录 ...
- OpenStack 云主机深入了解(十四)
云主机深入了解 1.云主机在计算节点以进程方式运行 2.监听vnc的端口,vnc默认端口从5900开始, 多台云主机,端口递增 3.云主机桥接网卡,与宿主机联通网络 提示:在openstack环境下, ...
- .net MVC入门
这里面之所以没有Sql语句但是也可以对数据库进行数据操作的原因就是Entity Framework.Entity Framework有三种模式,这里用的是Models模式. 网上有太多的.net MV ...
- oracle 工作笔记,不定期更新
此博客为工作时,所见技术问题的解决方案笔记,欢迎大家转载,转载请注明出处,谢谢~ 更新时间: 2017-07-12 1. clob字段值读取时,借用extractvalue或extract函数读取节点 ...
- AngularJS总结
因为最近想学习一下ionic框架,了解到ionic是基于AngularJS语法,并且通过SASS构建应用程序,之前自己一直用Vue框架,还有Less,刚刚好趁此机会,学习一下AngularJS与SAS ...
- Spark记录-官网学习配置篇(一)
参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...
- hdu 5079 Square
http://acm.hdu.edu.cn/showproblem.php?pid=5079 题意: n*n网格,每个格子可以涂黑色或白色,有的格子必须涂黑色 问最大白色正方形边长分别为0,1,2,… ...
- Nginx配置项优化(转载)
(1)nginx运行工作进程个数,一般设置cpu的核心或者核心数x2 如果不了解cpu的核数,可以top命令之后按1看出来,也可以查看/proc/cpuinfo文件 grep ^processor / ...
- html5 canvas路径绘制2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...