【LOJ】#2118. 「HEOI2015」兔子与樱花
题解
怎么觉得都像树dp,不像贪心
但是树dp确实做不了
把每个节点的值设置为樱花+儿子数
把儿子合并到父亲上就是父亲的剩余容量加上儿子的值-1
每次在父亲的时候将儿子的值排序然后能加就加上
因为儿子如果不加进去那么之后的操作与儿子再也没有关系了,儿子影响的只有父亲,那么只是能让父亲一个节点被加入,那么和现在就加入儿子是等价的
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 2000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef long double db;
typedef unsigned int u32;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M,val[MAXN],ans,id[MAXN],cnt;
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE;
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
bool cmp(int a,int b) {
return val[a] < val[b];
}
void Init() {
read(N);read(M);
for(int i = 1 ; i <= N ; ++i) {
read(val[i]);
}
int k,p;
for(int i = 1 ; i <= N ; ++i) {
read(k);val[i] += k;
for(int j = 1 ; j <= k ; ++j) {
read(p);++p;add(i,p);
}
}
}
void dfs(int u) {
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
dfs(v);
}
cnt = 0;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;id[++cnt] = v;
}
sort(id + 1,id + cnt + 1,cmp);
for(int i = 1 ; i <= cnt ; ++i) {
if(M - val[u] >= val[id[i]] - 1) {val[u] += val[id[i]] - 1;++ans;}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
dfs(1);
out(ans);enter;
}
【LOJ】#2118. 「HEOI2015」兔子与樱花的更多相关文章
- BZOJ4027/LG4107 「HEOI2015」兔子与樱花 树形DP+贪心
问题描述 LG4107 题解 首先,我们可以直接令结点 \(x\) 的权值为 \(c[x]+son_x\) ,发现将 \(x,y\) 合并,相当于增加 \(c[x]+c[y]-1\) 的重量. 容易想 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- oracle 查询重复数据并且删除, 只保留一条数据
数据库操作中,经常会因为导数据造成数据重复,需要进行数据清理,去掉冗余的数据,只保留正确的数据 一:重复数据根据单个字段进行判断 1.首先,查询表中多余的数据,由关键字段(name)来查询. sele ...
- PowerDesigner 打印错误
PowerDesigner打开pdm文件时报“打印错误”(解决) 原创作品,出自 “深蓝的blog” 博客,欢迎转载,转载时请务必注明出处,否则追究版权法律责任. 深蓝的blog:http://b ...
- get请求中的url encode问题
首先发表一下感慨,Python的requests模块确实太简便,省却了很多的转码等等等等的问题,但这也是缺点,对于我这种基础不好的同学来说让我少知道了许多本来应该知道的东西. url encode: ...
- java基础-网络编程(Socket)技术选型入门之NIO技术
java基础-网络编程(Socket)技术选型入门之NIO技术 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传统的网络编程 1>.编写socket通信的MyServer ...
- [整理]Visual Studio 的Application Insights
简单介绍 Application Insights(预览版) Visual Studio 的Application Insights插件简介 Application Insights for Visu ...
- 【整理】HTML5游戏开发学习笔记(4)- 记忆力游戏
1.预备知识(1)Canvas绘制多边形(2)Canvas绘制文字 2.实现思路涉及的对象 (1)场景Scene 场景代表了画布上的一块区域,场景里的每个物体都是场景里的一个元素,其绘制统一由场景 ...
- 用phpStorm的数据库工具来管理你的数据库
phpStorm是一个功能强大的IDE,不仅对PHP提供了支持,而且对前端HTML.CSS.JavaScript的支持也是非常不错的.此外,phpStorm还集成了很多实用的功能,下面就phpStor ...
- Spring Mvc 一个接口多个继承; (八)
在 spring 注解实现里,一个接口一般是不能多继承的! 除非在 bean 配置文件里有 针对这个 实现类的配置: <beans:bean id="icService" c ...
- [机器学习]SVM---硬间隔最大化数学原理
注:以下的默认为2分类 1.SVM原理: (1)输入空间到特征空间得映射 所谓输入空间即是输入样本集合,有部分情况输入空间与特征空间是相同得,有一部分情况二者是不同的,而模型定义都是定义到特征空间的, ...
- HDU 2086 A=? 数学题
题目描述:有一个公式,Ai = (Ai-1 + Ai+1)/2 - Ci (i = 1, 2, 3, .... n).,如果给出A0, An+1, 和 C1, C2, .....Cn要你计算出A1是多 ...