题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html

题意:给出大数s (s<=10100) ,L (<=106),s是两个素数的乘积,求其最小因子即这两个素数中较小者是否小于L。

思路:先通过欧筛法打表计算出106以内的素数,大概有8e4个。然后用千进制表示s,如将12345678表示成[012][345][678],用整型数组Kt表示,前面补0,这样做之后利用同余模定理计算Kt对x的模。如计算[012][345][678]%10,记模为M,则M=0, M=12%10=2, M=(2*1000+345)%10=5, M=(5*1000+678)%10=8。然后主要思路就是从小遍历打表得出的素数表,寻找是否存在能整除Kt的素数。用千进制的原因是为了降低复杂度,据说用百进制会T,万进制会wa(可能计算过程会超int)。

AC代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
using namespace std; const int maxn=;
int prime[maxn],vis[maxn],cnt,L,len1,len2,Kt[];
string s; void get_prime(){
memset(vis,,sizeof(vis));
for(int i=;i<=;++i){
if(vis[i]) prime[cnt++]=i;
for(int j=;j<cnt&&i*prime[j]<=;++j){
vis[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
} bool Mod(int x){
int M=;
for(int i=;i<len2;++i)
M=(M*+Kt[i])%x;
return M==?true:false;
} int main(){
get_prime();
while(cin>>s>>L,(s[]!='')||L){
len1=s.length();
if(len1%==) s=""+s;
else if(len1%==) s=""+s;
len1=s.length();
len2=len1/;
for(int i=;i<len2;++i)
Kt[i]=(s[*i]-'')*+(s[*i+]-'')*+(s[*i+]-'');
bool flag=true;
int p=;
while(p<cnt&&prime[p]<L){
if(Mod(prime[p])){
flag=false;
printf("BAD %d\n",prime[p]);
break;
}
++p;
}
if(flag)
printf("GOOD\n");
}
return ;
}

poj2635(千进制取模+同余模定理)的更多相关文章

  1. 【阔别许久的博】【我要开始攻数学和几何啦】【高精度取模+同余模定理,*】POJ 2365 The Embarrassed Cryptographer

    题意:给出一大数K(4 <= K <= 10^100)与一整数L(2 <= L <= 106),K为两个素数的乘积(The cryptographic keys are cre ...

  2. The Embarrassed Cryptographer(高精度取模+同余模定理)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11435   Accepted: 3040 Description The ...

  3. poj 2635 千进制

    转自:http://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 大致题意: 给定一个大数K,K是两个大素数的乘积的值. 再给定一个 ...

  4. POJ - 2635 The Embarrassed Cryptographer(千进制+同余模)

    http://poj.org/problem?id=2635 题意 给一个大数K,K一定为两个素数的乘积.现给出一个L,若K的两个因子有小于L的,就输出BAD,并输出较小的因子.否则输出GOOD 分析 ...

  5. POJ 2635 The Embarrassed Cryptographer (千进制,素数筛,同余定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15767   A ...

  6. POJ - 1426 暴力枚举+同余模定理 [kuangbin带你飞]专题一

    完全想不到啊,同余模定理没学过啊,想起上学期期末考试我问好多同学'≡'这个符号什么意思,都说不知道,你们不是上了离散可的吗?不过看了别人的解法我现在会了,同余模定理介绍及运用点这里点击打开链接 简单说 ...

  7. POJ 1426 Find The Multiple &amp;&amp; 51nod 1109 01组成的N的倍数 (BFS + 同余模定理)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21436   Accepted: 877 ...

  8. poj 1426 Find The Multiple ( BFS+同余模定理)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18390   Accepted: 744 ...

  9. 同余模定理 HDOJ 5373 The shortest problem

    题目传送门 /* 题意:题目讲的很清楚:When n=123 and t=3 then we can get 123->1236->123612->12361215.要求t次操作后, ...

随机推荐

  1. Spring的applicationContext.xml的疑问解析

    Spring中注解注入 context:component-scan 的使用说明 通常情况下我们在创建spring项目的时候在xml配置文件中都会配置这个标签,配置完这个标签后,spring就会去自动 ...

  2. leetcode701

    class Solution: def insertIntoBST(self, root, val): """ Time: O(log(n)) [average case ...

  3. 排查bug的步骤

    原创文章,欢迎阅读,禁止转载. bug预防C/C++代码发布前的检查:检查有没有低级错误,可用cppcheck (bug预防是指在写程序的时候,bug没出现,积极的进行预防,减少.包括良好的编码风格. ...

  4. PHP中Notice: unserialize(): Error at offset of bytes in on line 的解决方法

    使用unserialize函数将数据储存到数据库的时候遇到了这个报错,后来发现是将gb2312转换成utf-8格式之后,每个中文的字节数从2个增加到3个之后导致了反序列化的时候判断字符长度出现了问题, ...

  5. Linux:服务器/客户端API调用错误检查

    昨天和今天上午,我分别实现简单的服务器和客户端,运行之后表示没问题,一切正常.但是这还是有问题的,最大的一个就是没有错误检查.现在我们来加上错误检查: 服务器的代码: #include <std ...

  6. Examples: How to Pronounce T

    Examples: How to Pronounce T Share Tweet Share Tagged With: Flap T, Stop T The [t] sound is not alwa ...

  7. python实现查找算法:二分查找法

    二分查找算法也称折半查找,基本思想就是折半,和平时猜数字游戏一样,比如猜的数字时67,猜测范围是0-100,则会先猜测中间值50,结果小了,所以就会从50-100猜测,中间值为75,结果大了,又从50 ...

  8. 阿里云栖大会 所有ppt

    https://github.com/Alimei/hangzhouYunQi2017ppt

  9. linux的一些目录结构

    home:家.用户的家. 普通用户的家目录文件在home下 例如:一个用户名为tom的用户,在home下就会存在tom的目录. root:超级管理员root的家 etc:存放配置文件 usr:存放共享 ...

  10. js基础-运算符

    100 * "20" 字符串转数字 5 * "ss"  NAN "ss" 转数字返回NAN 任何数字与NAN +-*/ 都返回NAN 5/N ...