In the big cities, the subway systems always look so complex to the visitors. To give you some sense, the following figure shows the map of Beijing subway. Now you are supposed to help people with your computer skills! Given the starting position of your user, your task is to find the quickest way to his/her destination.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (< =100), the number of subway lines. Then N lines follow, with the i-th (i = 1, ..., N) line describes the i-th subway line in the format:

M S[1] S[2] ... S[M]

where M (<= 100) is the number of stops, and S[i]'s (i = 1, ... M) are the indices of the stations (the indices are 4-digit numbers from 0000 to 9999) along the line. It is guaranteed that the stations are given in the correct order -- that is, the train travels between S[i] and S[i+1] (i = 1, ..., M-1) without any stop.

Note: It is possible to have loops, but not self-loop (no train starts from S and stops at S without passing through another station). Each station interval belongs to a unique subway line. Although the lines may cross each other at some stations (so called "transfer stations"), no station can be the conjunction of more than 5 lines.

After the description of the subway, another positive integer K (<= 10) is given. Then K lines follow, each gives a query from your user: the two indices as the starting station and the destination, respectively.

The following figure shows the sample map.

Note: It is guaranteed that all the stations are reachable, and all the queries consist of legal station numbers.

Output Specification:

For each query, first print in a line the minimum number of stops. Then you are supposed to show the optimal path in a friendly format as the following:

Take Line#X1 from S1 to S2.
Take Line#X2 from S2 to S3.
......

where Xi's are the line numbers and Si's are the station indices. Note: Besides the starting and ending stations, only the transfer stations shall be printed.

If the quickest path is not unique, output the one with the minimum number of transfers, which is guaranteed to be unique.

Sample Input:

4
7 1001 3212 1003 1204 1005 1306 7797
9 9988 2333 1204 2006 2005 2004 2003 2302 2001
13 3011 3812 3013 3001 1306 3003 2333 3066 3212 3008 2302 3010 3011
4 6666 8432 4011 1306
3
3011 3013
6666 2001
2004 3001

Sample Output:

2
Take Line#3 from 3011 to 3013.
10
Take Line#4 from 6666 to 1306.
Take Line#3 from 1306 to 2302.
Take Line#2 from 2302 to 2001.
6
Take Line#2 from 2004 to 1204.
Take Line#1 from 1204 to 1306.
Take Line#3 from 1306 to 3001.
题目大意是从u到v怎么走经过的站点最少,站点同样少的情况下,要求换乘最少。
最纠结的就是怎么处理这个站属于哪条路线上的,其实直接用一个line数组存储每两个站点之间的线路号即可。然后做一遍dfs即可。
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
int line[][];
vector<int>v[];
vector<int>path,temppath;
int minstation,minsubway;
const int inf=0x3f3f3f3f;
bool vis[];
void dfs(int u,int vv,int now,int subway,int station)
{
//cout<<u<<" "<<vv<<" "<<now<<" "<<subway<<endl;
vis[u]=;
temppath.push_back(u);
if(u==vv)
{
if(station<minstation)
{
minstation=station;
minsubway=subway;
path=temppath;
}
else if(station==minstation&&subway<minsubway)
{
minstation=station;
minsubway=subway;
path=temppath;
}
temppath.pop_back();
return;
}
for(int i=;i<v[u].size();i++)
{
if(vis[v[u][i]]==)
{
dfs(v[u][i],vv,line[u][v[u][i]],subway+(line[u][v[u][i]]!=now?:),station+);
vis[v[u][i]]=;
}
}
temppath.pop_back();
}
int main()
{
int n,m,pre,temp;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&m);
scanf("%d",&pre);
for(int j=;j<=m;j++)
{
scanf("%d",&temp);
line[pre][temp]=line[temp][pre]=i;
v[pre].push_back(temp);
v[temp].push_back(pre);
pre=temp;
}
}
int k,beg,end;
scanf("%d",&k);
for(int i=;i<=k;i++)
{
scanf("%d%d",&beg,&end);
temppath.clear();
path.clear();
memset(vis,,sizeof(vis));
minstation=minsubway=inf;
dfs(beg,end,,,);
printf("%d\n",minstation);
printf("Take Line#%d from %04d to ",line[path[]][path[]],path[]);
int now=line[path[]][path[]];
for(int i=;i<path.size();i++)
{
if(line[path[i-]][path[i]]!=now)
{
printf("%04d.\n",path[i-]);
now=line[path[i-]][path[i]];
printf("Take Line#%d from %04d to ",now,path[i-]);
}
}
printf("%04d.\n",end);
}
}

PAT1131(dfs)的更多相关文章

  1. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  2. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  3. BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1352  Solved: 780[Submit][Stat ...

  4. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

  5. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  6. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  7. 深度优先搜索(DFS)

    [算法入门] 郭志伟@SYSU:raphealguo(at)qq.com 2012/05/12 1.前言 深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一 ...

  8. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  9. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

随机推荐

  1. docker修改镜像名称

    [root@localhost ~]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE pujh/centos tomcat-centos 70f ...

  2. 网站优化JS css压缩

    在nginx 中开启gzip压缩后,可以大大减少资js css 体积,原来200KB,压缩后只有66KB server{ gzip on; gzip_types text/plain applicat ...

  3. C++ primer ch6 函数基础-1

    1.形参和实参:编译器并没有规定实参的求值顺序. 类似下面的代码,其行为是未定义的: ; printf("%d %d\n",++i,++i); 2.变量的初始化: 如果内置类型的变 ...

  4. ReactiveX 学习笔记(5)合并数据流

    Combining Observables 本文的主题为合并 Observable 的操作符. 这里的 Observable 实质上是可观察的数据流. RxJava操作符(四)Combining An ...

  5. 检测浏览器是否支持cookie功能

    <script> if(navigator.cookieEnabled) { document.write("你的浏览器支持cookie功能!"); } else{ d ...

  6. 多线程数据库查询(ADO)

    ADO多线程数据库查询通常会出现3个问题: 1.CoInitialize 没有调用(CoInitialize was not called):所以,在使用任何dbGo对象前,必须手 调用CoIniti ...

  7. 29.Junit测试框架.md

    目录 作用 使用 单个对象的测试 有步骤的测试 注意 作用 用于简化测试,可以对方法,类,包等范围测试 使用 单个对象的测试 在需要测试的方法上加注解@Test,选中方法,运行里选择junit执行 同 ...

  8. 获取字段唯一值工具- -ArcPy和Python案例学习笔记

    获取字段唯一值工具- -ArcPy和Python案例学习笔记   目的:获取某一字段的唯一值,可以作为工具使用,也可以作为函数调用 联系方式:谢老师,135-4855-4328,xiexiaokui# ...

  9. Java编译时多态和运行时多态

    来源:https://blog.csdn.net/wendizhou/article/details/73733061 编译时多态:主要是方法的重载,通过参数列表的不同来区分不同的方法. 运行时多态: ...

  10. LinQ to sql 各种数据库查询方法

    1.多条件查询: 并且 && 或者 || var list = con.car.Where(r => r.code == "c014" || r.oil == ...