In the big cities, the subway systems always look so complex to the visitors. To give you some sense, the following figure shows the map of Beijing subway. Now you are supposed to help people with your computer skills! Given the starting position of your user, your task is to find the quickest way to his/her destination.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (< =100), the number of subway lines. Then N lines follow, with the i-th (i = 1, ..., N) line describes the i-th subway line in the format:

M S[1] S[2] ... S[M]

where M (<= 100) is the number of stops, and S[i]'s (i = 1, ... M) are the indices of the stations (the indices are 4-digit numbers from 0000 to 9999) along the line. It is guaranteed that the stations are given in the correct order -- that is, the train travels between S[i] and S[i+1] (i = 1, ..., M-1) without any stop.

Note: It is possible to have loops, but not self-loop (no train starts from S and stops at S without passing through another station). Each station interval belongs to a unique subway line. Although the lines may cross each other at some stations (so called "transfer stations"), no station can be the conjunction of more than 5 lines.

After the description of the subway, another positive integer K (<= 10) is given. Then K lines follow, each gives a query from your user: the two indices as the starting station and the destination, respectively.

The following figure shows the sample map.

Note: It is guaranteed that all the stations are reachable, and all the queries consist of legal station numbers.

Output Specification:

For each query, first print in a line the minimum number of stops. Then you are supposed to show the optimal path in a friendly format as the following:

Take Line#X1 from S1 to S2.
Take Line#X2 from S2 to S3.
......

where Xi's are the line numbers and Si's are the station indices. Note: Besides the starting and ending stations, only the transfer stations shall be printed.

If the quickest path is not unique, output the one with the minimum number of transfers, which is guaranteed to be unique.

Sample Input:

4
7 1001 3212 1003 1204 1005 1306 7797
9 9988 2333 1204 2006 2005 2004 2003 2302 2001
13 3011 3812 3013 3001 1306 3003 2333 3066 3212 3008 2302 3010 3011
4 6666 8432 4011 1306
3
3011 3013
6666 2001
2004 3001

Sample Output:

2
Take Line#3 from 3011 to 3013.
10
Take Line#4 from 6666 to 1306.
Take Line#3 from 1306 to 2302.
Take Line#2 from 2302 to 2001.
6
Take Line#2 from 2004 to 1204.
Take Line#1 from 1204 to 1306.
Take Line#3 from 1306 to 3001.
题目大意是从u到v怎么走经过的站点最少,站点同样少的情况下,要求换乘最少。
最纠结的就是怎么处理这个站属于哪条路线上的,其实直接用一个line数组存储每两个站点之间的线路号即可。然后做一遍dfs即可。
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
int line[][];
vector<int>v[];
vector<int>path,temppath;
int minstation,minsubway;
const int inf=0x3f3f3f3f;
bool vis[];
void dfs(int u,int vv,int now,int subway,int station)
{
//cout<<u<<" "<<vv<<" "<<now<<" "<<subway<<endl;
vis[u]=;
temppath.push_back(u);
if(u==vv)
{
if(station<minstation)
{
minstation=station;
minsubway=subway;
path=temppath;
}
else if(station==minstation&&subway<minsubway)
{
minstation=station;
minsubway=subway;
path=temppath;
}
temppath.pop_back();
return;
}
for(int i=;i<v[u].size();i++)
{
if(vis[v[u][i]]==)
{
dfs(v[u][i],vv,line[u][v[u][i]],subway+(line[u][v[u][i]]!=now?:),station+);
vis[v[u][i]]=;
}
}
temppath.pop_back();
}
int main()
{
int n,m,pre,temp;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&m);
scanf("%d",&pre);
for(int j=;j<=m;j++)
{
scanf("%d",&temp);
line[pre][temp]=line[temp][pre]=i;
v[pre].push_back(temp);
v[temp].push_back(pre);
pre=temp;
}
}
int k,beg,end;
scanf("%d",&k);
for(int i=;i<=k;i++)
{
scanf("%d%d",&beg,&end);
temppath.clear();
path.clear();
memset(vis,,sizeof(vis));
minstation=minsubway=inf;
dfs(beg,end,,,);
printf("%d\n",minstation);
printf("Take Line#%d from %04d to ",line[path[]][path[]],path[]);
int now=line[path[]][path[]];
for(int i=;i<path.size();i++)
{
if(line[path[i-]][path[i]]!=now)
{
printf("%04d.\n",path[i-]);
now=line[path[i-]][path[i]];
printf("Take Line#%d from %04d to ",now,path[i-]);
}
}
printf("%04d.\n",end);
}
}

PAT1131(dfs)的更多相关文章

  1. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  2. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  3. BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1352  Solved: 780[Submit][Stat ...

  4. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

  5. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  6. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  7. 深度优先搜索(DFS)

    [算法入门] 郭志伟@SYSU:raphealguo(at)qq.com 2012/05/12 1.前言 深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一 ...

  8. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  9. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

随机推荐

  1. Python linux 上的管理工具 pyenv 安装, pip 使用, python项目(版本分割, 项目分割, 虚拟环境创建)

    01: 假设你有一个最小环境安装的 centos-6.x 的linux操作系统 02: 安装 git => yum -y install git 03: 安装依赖 => yum -y in ...

  2. springMVC源码学习地址

    springmvc工作原理以及源码分析(基于spring3.1.0) 感谢作者  宏愿, 在此记录下,以便学习 SpringMVC源码分析(1):分析DispatcherServlet.doDispa ...

  3. [转]講講 John Carmack 的快速反平方根演算法

    講講 John Carmack 的快速反平方根演算法  原地址http://213style.blogspot.com/2014/07/john-carmack.html 本篇的主題很簡單,講講怎麼快 ...

  4. 列表(list) 的 基本操作

    举例说明:names = ["zhangyang", "guyun", 'xiangpeng', ['alex','jack'], "xuliangc ...

  5. Android虚拟机与Java虚拟机 两种虚拟机的比较

    在Android的体系框架中有一部分叫做Android Runtime,即Android运行时环境,这个环境包括了两个部分,一个是Android的核心类库,还有一个就是Dalvik虚拟机了. Andr ...

  6. innosetup 安装前、卸载前判断是否有进程正在运行<转>

    [Code] //安装前判断是否有进程正在运行,istask.dll文件与打包的exe文件一起 function RunTask(FileName: string; bFullpath: Boolea ...

  7. jquery接触初级-----ajax 之:load()方法

    jquery _ajax 请求主要有几种方式:load(),$.get(),$.post(),$.ajax(),$.getScript(),$.getJson() 1.load()方法 格式:load ...

  8. C语言复习:字符串和一级指针

    字符串基本操作 字符数组初始化方法 int main() {     //1 {}号法 初始化列表     //数组初始化有2种方法 默认元素个数.指定元素个数     char buf1[] = { ...

  9. ReactiveX 学习笔记(5)合并数据流

    Combining Observables 本文的主题为合并 Observable 的操作符. 这里的 Observable 实质上是可观察的数据流. RxJava操作符(四)Combining An ...

  10. Angular2学习笔记

    Angular2 这里 Angular2 是指采用 TypeScript 语言的 Angular 2.0及以上版本.与采用 JavaScript 语言的 AngularJS 相比,Angular2 不 ...