Pathwalks CodeForces - 960F(主席树 || 树状数组)
题意:
求树上最长上升路径
解析:
树状数组版: 998ms
edge[u][w] 代表以u为一条路的终点的小于w的最长路径的路的条数
· 那么edge[v][w] = max(edge[u][w-1]) + 1;
因为w最小是0 所以所有的w都+1
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6+, INF = 0x7fffffff;
int n, m, maxx = -INF;
map<int, int> edge[maxn];
int lowbit(int x)
{
return x & -x;
}
int qp(int u, int w)
{
int ret = ;
for(int i=w; i>; i-=lowbit(i))
ret = max(ret, edge[u][i]);
return ret;
} int build(int u, int w, int ans)
{
while(w)
{
edge[u][w] = max(edge[u][w], ans);
w += lowbit(w);
} } int main()
{
int u, v, w;
cin >> n >> m;
for(int i=; i<m; i++)
{
cin >> u >> v >> w;
maxx = max(maxx, w);
build(v, +, qp(u, w)+);
}
int max_ret = -INF;
for(int i=; i<=n; i++)
max_ret = max(max_ret, qp(i, ));
cout << max_ret << endl; return ;
}
主席树: 108ms
每棵树都建立100000个结点 每次更新小于w的结点的sum
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1e5 + , INF = 0x7fffffff;
int n, m, cnt, root[maxn], a[maxn], x, y, k;
struct node{int l, r, sum;}T[maxn*];
void update(int l, int r, int& x, int w, int ci)
{
if(!x) x = ++cnt; T[x].sum = max(T[x].sum, ci);
if(l == r) return;
int mid = (l + r) / ;
if(mid >= w) return update(l, mid, T[x].l, w, ci);
else return update(mid+, r, T[x].r, w, ci);
} int query(int l, int r, int x, int k)
{
if(l == r) return T[x].sum;
int mid = (l + r)/;
if(mid >= k) return query(l, mid, T[x].l, k);
else return max(T[T[x].l].sum, query(mid+, r, T[x].r, k));
} int main()
{
int u, v, w, ret = -INF;
rd(n), rd(m);
rep(i, , m)
{
rd(u), rd(v), rd(w);
w++;
int tmp = query(, , root[u], w-) + ;
update(, , root[v], w, tmp);
ret = max(ret, tmp);
}
cout<< ret <<endl; return ;
}
Pathwalks CodeForces - 960F(主席树 || 树状数组)的更多相关文章
- CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)
The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...
- Codeforces 960F Pathwalks ( LIS && 树状数组 )
题意 : 给出若干个边,每条边按照给出的顺序编号,问你找到一条最长的边权以及边的编号同时严格升序的一条路径,要使得这条路径包含的边尽可能多,最后输出边的条数 分析 : 这题和 LIS 很相似,不同的 ...
- Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)
E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...
- bzoj1901--树状数组套主席树
树状数组套主席树模板题... 题目大意: 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[ ...
- HDU 3333 | Codeforces 703D 树状数组、离散化
HDU 3333:http://acm.hdu.edu.cn/showproblem.php?pid=3333 这两个题是类似的,都是离线处理查询,对每次查询的区间的右端点进行排序.这里我们需要离散化 ...
- BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树
[题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...
- BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树
[题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...
- 【BZOJ 1901】【Zju 2112】 Dynamic Rankings 动态K值 树状数组套主席树模板题
达神题解传送门:http://blog.csdn.net/dad3zz/article/details/50638360 说一下我对这个模板的理解: 看到这个方法很容易不知所措,因为动态K值需要套树状 ...
- 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))
函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...
随机推荐
- Android使用正则表达式验证手机号
国内手机号代码段分配如下: 移动:134.135.136.137.138.139.150.151.157(TD).158.159.187.188 联通:130.131.132.152.155.156. ...
- POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))
Cow Contest Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16341 Accepted: 9146 Desc ...
- 七,ESP8266-UDP(基于Lua脚本语言)
https://www.cnblogs.com/yangfengwu/p/7533302.html 那天朋友问我为什么有UDP Sever 和 UDP Client ,,我说:每个人想的不一样,设 ...
- 20155327 李百乾 Exp7 网络欺诈防范
20155327 李百乾 Exp7 网络欺诈防范 基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 就此次试验来看,被收到NDSspoof攻击,首先要被攻击机扫描,并被设置为目标,所 ...
- Vue 项目集合
饿了么安全应急响应中心 饿了么招聘 饿了么前端 · GitHub 稀土掘金 异乡好居 明星垂搜 广州建管 基于Vue.js的数据统计系统(一) 基于Vue.js的数据统计系统(二) 基于Vue.js的 ...
- FormData 数据转化为 json 数据
两种方法 <!-- 实例:将 FormData 转化为 json --> <meta charset="utf-8"/> <form enctype= ...
- .Net单元测试业务实践
使用次数和允许取消次数单元测试实践 /** * prism.js Github theme based on GitHub's theme. * @author Sam Clarke */ code[ ...
- Windows10没有修改hosts文件权限的解决方案(亲测有效)
当遇到有hosts文件不会编辑或者,修改了没办法保存”,以及需要权限等问题如图: 或者这样: 我学了一招,现在教给你: 1.win+R 2.进入hosts的文件所在目录: 3.我们开始如何操作才能不出 ...
- 这可能是最详细的Python文件操作
删除 # ==================删除==================# 只能删除文件,若为目录则报错# 若文件正在使用,Windows下会直接报错,Linux下会在目录表中删除记录, ...
- 用opencv实现工控机的开机录像
需要训练一个神经网络模型,可能需要用到很多视频数据,所以我想把手头的工控机设置为上电自启动,再借助opencv编译一个可执行文件,放在windows开机启动文件夹里,这样只要连接好摄像头和工控机以及电 ...