tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 结果返回一个Tensor,这个输出,就是我们常说的feature map

input

指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一.

filter

相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维.

strides

卷积时在图像每一维的步长,这是一个一维向量,长度4。步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]。(image_batch_size_stride,image_height_stride,image_width_stride,image_channels_stride )。第 1 个和最后一个跨度参数通常很少修改,因为它们会在 tf.nn.conv2d 运算中跳过一些数据,从而不将这部分数据予以考虑。如果希望降低输入的维数,可修改 image_height_stride 和 image_width_stride 参数。

padding

string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同的卷积方式。

SAME:卷积输出与输入的尺寸相同。这里在计算如何跨越图像时,并不考虑滤波器的尺寸。选用该设置时,缺失的像素将用 0 填充,卷积核扫过的像素数将超过图像的实际像素数。

VALID:在计算卷积核如何在图像上跨越时,需要考虑滤波器的尺寸。这会使卷积核尽量不越过图像的边界。在某些情形下,可能边界也会被填充。

tf.nn.conv_2d的更多相关文章

  1. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  2. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  3. tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码

    这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...

  4. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  5. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  6. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  7. 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢

    空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...

  8. 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?

    反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    ...

  9. 模型压缩,模型减枝,tf.nn.zero_fraction,统计0的比例,等。

    我们刚接到一个项目时,一开始并不是如何设计模型,而是去先跑一个现有的模型,看在项目需求在现有模型下面效果怎么样.当现有模型效果不错需要深入挖掘时,仅仅时跑现有模型是不够的,比如,如果你要在嵌入式里面去 ...

随机推荐

  1. mysql新建用户在本地无法登录

    新建了一个mysql用户,但是无法在本地登录,即使已经授权任一ip都可以登录,甚至特地写清楚localhost登录,还是不行,情况如下 [root@localhost zabbix-release-3 ...

  2. MySQL--派生表临时结果集中的AutoKey

    在某些场景中,需要对派生表生成临时结果集进行materialized,如果该临时结果集中包含索引键,那么查询有可能通过该索引键来进行优化. 如对下面查询: SELECT T2.purpose_code ...

  3. apache常用配置文件讲解

    apache 的httpd.conf常用配置说明 # ServerRoot: The top of the directory tree under which the server's # conf ...

  4. 谈谈在 .Net 平台上的 软件生态 和 软件生产力

    我们可以先看看这篇文章 : <看 StackOverflow 如何用 25 台服务器撑起 5.6 亿的月 PV>    http://www.nowamagic.net/librarys/ ...

  5. 关于adaboost分类器

    我花了将近一周的时间,才算搞懂了adaboost的原理.这根骨头终究还是被我啃下来了. Adaboost是boosting系的解决方案,类似的是bagging系,bagging系是另外一个话题,还没有 ...

  6. Scala实战

    1. Eclipse中设置scala调试器 scala的调试器要选择Scala Application(new debuger)Launcher:开始选择图省事,选择了一个字母少的,亲切的Launch ...

  7. java-shiro登录验证

    登录验证: LoginController:(LoginController.java) @ResponseBody @RequestMapping(value="/login", ...

  8. 看图写代码---看图写代码 阅读<<Audio/Video Connectivity Solutions for Virtex-II Pro and Virtex-4 FPGAs >>

    看图写代码 阅读<<Audio/Video Connectivity Solutions for Virtex-II Pro and Virtex-4 FPGAs >> 1.S ...

  9. html-display标签

    标签可以分为行内标签和行间块级标签, 块级标签:占一行,如果父标签没有限高度,子标签会自动扩展父标签的高度,行内标签不能, 可以设置宽度 高度 padding margin 行内标签:    不能设置 ...

  10. linux lftp

    1.登录 lftp 用户名@站点 口令: 例如: lftp jiangzhaowei@192.168.199.73 口令:****** lftp jiangzhaowei@192.168.199.73 ...