乘风破浪:LeetCode真题_023_Merge k Sorted Lists
乘风破浪:LeetCode真题_023_Merge k Sorted Lists
一、前言
上次我们学过了合并两个链表,这次我们要合并N个链表要怎么做呢,最先想到的就是转换成2个链表合并的问题,然后解决,再优化一点的,就是两个两个合并,当然我们也可以一次性比较所有的元素,然后一点点的进行合并等等。
二、Merge k Sorted Lists
2.1 问题
2.2 分析与解决
首先我们看看官方的解法:
第一种方法:暴力算法,将所有的元素放到一个数组里面,排序之后再用指针链接。
# Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None class Solution(object):
def mergeKLists(self, lists):
"""
:type lists: List[ListNode]
:rtype: ListNode
"""
self.nodes = []
head = point = ListNode(0)
for l in lists:
while l:
self.nodes.append(l.val)
l = l.next
for x in sorted(self.nodes):
point.next = ListNode(x)
point = point.next
return head.next
第二种方法:用N个指针,每次比较最小的,然后连接起来。
第三种方法:通过优先级队列减少了一些比较的时间。
from Queue import PriorityQueue class Solution(object):
def mergeKLists(self, lists):
"""
:type lists: List[ListNode]
:rtype: ListNode
"""
head = point = ListNode(0)
q = PriorityQueue()
for l in lists:
if l:
q.put((l.val, l))
while not q.empty():
val, node = q.get()
point.next = ListNode(val)
point = point.next
node = node.next
if node:
q.put((node.val, node))
return head.next
第四种,我们提到过的转换成两个链表合并问题。
第五种,分治法合并,减少合并次数。
class Solution(object):
def mergeKLists(self, lists):
"""
:type lists: List[ListNode]
:rtype: ListNode
"""
amount = len(lists)
interval = 1
while interval < amount:
for i in range(0, amount - interval, interval * 2):
lists[i] = self.merge2Lists(lists[i], lists[i + interval])
interval *= 2
return lists[0] if amount > 0 else lists def merge2Lists(self, l1, l2):
head = point = ListNode(0)
while l1 and l2:
if l1.val <= l2.val:
point.next = l1
l1 = l1.next
else:
point.next = l2
l2 = l1
l1 = point.next.next
point = point.next
if not l1:
point.next=l2
else:
point.next=l1
return head.next
我们的解法:其实和优先级队列很相似,都是使用了小根堆这样的结构来处理。
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List; public class Solution {
/**
* <pre>
* Merge k sorted linked lists and return it as one sorted list.
* Analyze and describe its complexity.
*
* 题目大意:
* 合并k个排好的的单链表
*
* 解题思路:
* 使用一个小堆来进行操作,先将k个单链表的第一个结点入堆,再取堆中的最小素,此为最小的元素,
* 将这个元素的下一个结点堆,再取堆中最小的,依次操作直到堆为空
* </pre>
*
* @param lists
* @return
*/
public ListNode mergeKLists(ListNode[] lists) { // 为空或者没有元素
if (lists == null || lists.length < 1) {
return null;
} // 只有一个元素
if (lists.length == 1) {
return lists[0];
} // 创建一个小顶堆,并且使用一个匿名内部类作为比较器
MinHeap<ListNode> minHeap = new MinHeap<ListNode>(new Comparator<ListNode>() {
@Override
public int compare(ListNode o1, ListNode o2) {
if (o1 == null) {
return -1;
} if (o2 == null) {
return 1;
} return o1.val - o2.val;
}
}); // 将数组中链表的第一个结点入堆
for (ListNode node : lists) {
if (node != null) {
minHeap.add(node);
}
} // 头结点,作辅助使用
ListNode head = new ListNode(0);
// 当前处理的结点
ListNode curr = head; while (!minHeap.isEmpty()) {
ListNode node = minHeap.deleteTop(); // 结点的下一个结点不为空就将下一个结点入堆
if (node.next != null) {
minHeap.add(node.next);
} curr.next = node;
curr = node;
} return head.next;
} /**
* 小顶堆
*
* @param <T>
*/
private static class MinHeap<T> {
// 堆中元素存放的集合
private List<T> items; private Comparator<T> comp; /**
* 构造一个椎,始大小是32
*/
public MinHeap(Comparator<T> comp) {
this(32, comp);
} /**
* 造诣一个指定初始大小的堆
*
* @param size 初始大小
*/
public MinHeap(int size, Comparator<T> comp) {
items = new ArrayList<>(size);
this.comp = comp;
} /**
* 向上调整堆
*
* @param index 被上移元素的起始位置
*/
public void siftUp(int index) {
T intent = items.get(index); // 获取开始调整的元素对象 while (index > 0) { // 如果不是根元素
int parentIndex = (index - 1) / 2; // 找父元素对象的位置
T parent = items.get(parentIndex); // 获取父元素对象
if (comp.compare(intent, parent) < 0) { //上移的条件,子节点比父节点小
items.set(index, parent); // 将父节点向下放
index = parentIndex; // 记录父节点下放的位置
} else { // 子节点不比父节点小,说明父子路径已经按从小到大排好顺序了,不需要调整了
break;
}
} // index此时记录是的最后一个被下放的父节点的位置(也可能是自身),
// 所以将最开始的调整的元素值放入index位置即可
items.set(index, intent);
} /**
* 向下调整堆
*
* @param index 被下移的元素的起始位置
*/
public void siftDown(int index) {
T intent = items.get(index); // 获取开始调整的元素对象
int leftIndex = 2 * index + 1; // // 获取开始调整的元素对象的左子结点的元素位置 while (leftIndex < items.size()) { // 如果有左子结点
T minChild = items.get(leftIndex); // 取左子结点的元素对象,并且假定其为两个子结点中最小的
int minIndex = leftIndex; // 两个子节点中最小节点元素的位置,假定开始时为左子结点的位置 int rightIndex = leftIndex + 1; // 获取右子结点的位置
if (rightIndex < items.size()) { // 如果有右子结点
T rightChild = items.get(rightIndex); // 获取右子结点的元素对象
if (comp.compare(rightChild, minChild) < 0) { // 找出两个子节点中的最小子结点
minChild = rightChild;
minIndex = rightIndex;
}
} // 如果最小子节点比父节点小,则需要向下调整
if (comp.compare(minChild, intent) < 0) {
items.set(index, minChild); // 将子节点向上移
index = minIndex; // 记录上移节点的位置
leftIndex = index * 2 + 1; // 找到上移节点的左子节点的位置
} else { // 最小子节点不比父节点小,说明父子路径已经按从小到大排好顺序了,不需要调整了
break;
}
} // index此时记录是的最后一个被上移的子节点的位置(也可能是自身),
// 所以将最开始的调整的元素值放入index位置即可
items.set(index, intent);
} /**
* 向堆中添加一个元素
*
* @param item 等待添加的元素
*/
public void add(T item) {
items.add(item); // 将元素添加到最后
siftUp(items.size() - 1); // 循环上移,以完成重构
} /**
* 删除堆顶元素
*
* @return 堆顶部的元素
*/
public T deleteTop() {
if (items.isEmpty()) { // 如果堆已经为空,就报出异常
throw new RuntimeException("The heap is empty.");
} T maxItem = items.get(0); // 获取堆顶元素
T lastItem = items.remove(items.size() - 1); // 删除最后一个元素
if (items.isEmpty()) { // 删除元素后,如果堆为空的情况,说明删除的元素也是堆顶元素
return lastItem;
} items.set(0, lastItem); // 将删除的元素放入堆顶
siftDown(0); // 自上向下调整堆
return maxItem; // 返回堆顶元素
} /**
* 判断堆是否为空
*
* @return true是空,false否
*/
public boolean isEmpty() {
return items.isEmpty();
}
} }
三、总结
通过上面的分析我们可以发现只有不断的优化我们的算法,才能使得效率不断地提升,同时也锻炼了我们的思考能力。
乘风破浪:LeetCode真题_023_Merge k Sorted Lists的更多相关文章
- 乘风破浪:LeetCode真题_021_Merge Two Sorted Lists
乘风破浪:LeetCode真题_021_Merge Two Sorted Lists 一.前言 关于链表的合并操作我们是非常熟悉的了,下面我们再温故一下将两个有序链表合并成一个的过程,这是基本功. 二 ...
- 【LeetCode练习题】Merge k Sorted Lists
Merge k Sorted Lists Merge k sorted linked lists and return it as one sorted list. Analyze and descr ...
- [Leetcode][Python]23: Merge k Sorted Lists
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 23: Merge k Sorted Listshttps://oj.leet ...
- leetcode第22题--Merge k Sorted Lists
problem:Merge k sorted linked lists and return it as one sorted list. Analyze and describe its compl ...
- 【LeetCode】23. Merge k Sorted Lists 合并K个升序链表
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人公众号:负雪明烛 本文关键词:合并,链表,单链表,题解,leetcode, 力扣,Py ...
- 【一天一道LeetCode】#23. Merge k Sorted Lists
一天一道LeetCode系列 (一)题目 Merge k sorted linked lists and return it as one sorted list. Analyze and descr ...
- Leetcode Week3 Merge Two(k) Sorted Lists
Question Q1.Merge two sorted linked lists and return it as a new list. The new list should be made b ...
- LeetCode OJ:Merge k Sorted Lists(归并k个链表)
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 类 ...
- LeetCode LinkList 23. Merge k Sorted Lists
这两天一直也没有顾上记录一下自己做过的题目,回头看看,感觉忘的好快,今天做了一个hard,刚开始觉得挺难得,想了两种方法,一种是每次都从k个list中选取最小的一个,为空的直接跳过,再就是每次合并其中 ...
随机推荐
- spring-boot-mail
1. 功能 发送普通邮件 发送htm邮件 发送带附件的邮件 发送带静态资源的邮件 2. 实现 类结构图 3. 实现 接口 package com.jihite.service; public inte ...
- 基于Hadoop2.6.5(HA)的Hive1.2.1的MySQL方式配置
1.Hive配置MySQL Hive只是一个工具,无需配置多台机器,我在CentOS7One机器上配置Hive /usr/local/hive/apache-hive-1.2.1-bin/conf c ...
- FFmpeg在JAVA中的使用-音频提取&字幕压缩
由于项目需求中涉及到视频中音频提取,以及字幕压缩的功能,一直在研究ffmpeg,仅仅两个功能,却深受ffmpeg的折磨. 今天谈谈ffmpeg在java中的简单使用,首先下载FFmpeg包,官方地址: ...
- Docker 使用官方镜像
Docker 使用官方镜像 如何使用官方镜像 Docker 中国官方镜像加速可通过 registry.docker-cn.com 访问.目前该镜像库只包含流行的公有镜像,而私有镜像仍需要从美国镜像库中 ...
- POJ 1679 The Unique MST(判断最小生成树是否唯一)
题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...
- VC++6.0调试:Watch窗口的使用
#include <stdio.h> #include <windows.h> class AutoExpand { public: AutoExpand(int val, c ...
- Mybatis插件开发
前面几篇文章介绍了Mybtis中四个重要的对象,其中提到它们都是在Configuration中被创建的,我们一起看一下创建四大对象的方法,代码如下所示: public ParameterHandler ...
- Vue: ES6常用语法
ES6 模板字符串: ~ ${变量名}~ <div id="app"></div> <script> /* 找到对应id */ let ite ...
- Java 基础:变量 与 字符串
变量 Java中没有初始化的变量是不能直接使用的 局部变量 String msg; System.out.print(msg); 就会提示错误,我们必须显式的为变量指定一个初值如null.刚开始学Ja ...
- cf250D. The Child and Sequence(线段树 均摊复杂度)
题意 题目链接 单点修改,区间mod,区间和 Sol 如果x > mod ,那么 x % mod < x / 2 证明: 即得易见平凡, 仿照上例显然, 留作习题答案略, 读者自证不难. ...