Description

You are given an undirected unweighted tree consisting of \(n\) vertices.

An undirected tree is a connected undirected graph with \(n−1\) edges.

Your task is to choose two pairs of vertices of this tree (all the chosen vertices should be distinct) \((x_1,y_1)\) and \((x_2,y_2)\) in such a way that neither \(x_1\) nor \(y_1\) belong to the simple path from \(x_2\) to \(y_2\) and vice versa (neither \(x_2\) nor \(y_2\) should not belong to the simple path from \(x_1\) to \(y_1\)).

It is guaranteed that it is possible to choose such pairs for the given tree.

Among all possible ways to choose such pairs you have to choose one with the maximum number of common vertices between paths from \(x_1\) to \(y_1\) and from \(x_2\) to \(y_2\). And among all such pairs you have to choose one with the maximum total length of these two paths.

It is guaranteed that the answer with at least two common vertices exists for the given tree.

The length of the path is the number of edges in it.

The simple path is the path that visits each vertex at most once.

Input

The first line contains an integer \(n\) — the number of vertices in the tree \((6 \le n \le 2 \cdot 10^5)\).

Each of the next \(n−1\) lines describes the edges of the tree.

Edge \(i\) is denoted by two integers \(u_i\) and \(v_i\), the labels of vertices it connects \((1\le u_i,v_i\le n, u_i \neq v_i)\).

It is guaranteed that the given edges form a tree.

It is guaranteed that the answer with at least two common vertices exists for the given tree.

Output

Print any two pairs of vertices satisfying the conditions described in the problem statement.

It is guaranteed that it is possible to choose such pairs for the given tree.

Examples

Input

7
1 4
1 5
1 6
2 3
2 4
4 7

Output

3 6
7 5

Input

9
9 3
3 5
1 2
4 3
4 7
1 7
4 6
3 8

Output

2 9
6 8

Input

10
6 8
10 3
3 7
5 8
1 7
7 2
2 9
2 8
1 4

Output

10 6
4 5

Input

11
1 2
2 3
3 4
1 5
1 6
6 7
5 8
5 9
4 10
4 11

Output

9 11
8 10

Note

The picture corresponding to the first example:

The intersection of two paths is \(2\) (vertices \(1\) and \(4\)) and the total length is \(4+3=7\).

The picture corresponding to the second example:

The intersection of two paths is \(2\) (vertices \(3\) and \(4\)) and the total length is \(5+3=8\).

The picture corresponding to the third example:

The intersection of two paths is \(3\) (vertices \(2\), \(7\) and \(8\)) and the total length is \(5+5=10\).

The picture corresponding to the fourth example:

The intersection of two paths is \(5\)(vertices \(1\), \(2\), \(3\), \(4\) and \(5\)) and the total length is \(6+6=12\).

Solution

题意:给定一棵树,找两组点\((x_1, y_1)\)和\((x_2, y_2)\),使得\(x_1,y_1\)不在\(x_2\)和\(y_2\)之间的路径上,\(x_2,y_2\)不在\(x_1\)和\(y_1\)之间的路径上,要求:

  • \(x_1,y_1\)之间的路径与\(x_2,y_2\)之间的路径的重合边数最多
  • 满足第一个条件的前提下,两条路径的长度之和最大

我们考虑两条路径的公共路径,不妨记作\((x, y)\),\(x\)和\(y\)的LCA记作\(a\),则\(a\)或者是\(x\)和\(y\)中的一个,或者是\(x\)与\(y\)路径上的其他节点,所以我们先求出每个点的度大于2的后代的最大深度,以及每个点往父亲方向能够到达的最远距离,然后再一次DFS,对于任何一个点\(u\):

  • 如果\(u\)有两个孩子节点具有度大于2的后代,则尝试更新答案
  • 否则,若\(u\)只有一个孩子节点具有度大于2的后代,且\(u\)自身的度大于2,则尝试更新答案
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200011;
struct triple {
  triple(int _u = 0, int _v1 = 0, int _v2 = 0) : u(_u), v1(_v1), v2(_v2) {}
  int u, v1, v2;
  bool operator<(const triple &b) const {return u < b.u;}
};
vector<int> w[maxn];
int deg[maxn], dep[maxn];
int x1, y1, x2, y2;
pair<pair<int, int>, triple> val[maxn]; // <<deg=3的后代(u)的最大深度, u到两个最远后代(v1, v2)的距离之和>, <u, v1, v2>>
pair<int, int> ans;
pair<int, int> mxdep[maxn], updis[maxn]; // <最远距离, u>
vector<pair<pair<int, int>, int>> downdis[maxn]; // <<后代(u)的最大深度, u>, 到该后代的路径上的第一个点>
void dfs1(int u, int d, int pre) {
  dep[u] = d;
  mxdep[u] = make_pair(d, u);
  for (int v : w[u]) {
    if (v == pre) continue;
    dfs1(v, d + 1, u);
    mxdep[u] = max(mxdep[u], mxdep[v]);
    downdis[u].push_back(make_pair(mxdep[v], v));
  }
  sort(downdis[u].begin(), downdis[u].end(), greater<pair<pair<int, int>, int>>());
}
void dfs2(int u, int pre) {
  if (~pre) {
    updis[u] = make_pair(1 + updis[pre].first, updis[pre].second);
    auto tp = downdis[pre][0].second == u ? downdis[pre][1].first : downdis[pre][0].first;
    if (downdis[pre].size() > 1) {
      updis[u] = max(updis[u], make_pair(tp.first + 1, tp.second));
    }
  } else {
    updis[u] = make_pair(0, u);
  }
  for (int v : w[u]) {
    if (v == pre) continue;
    dfs2(v, u);
  }
}
void dfs3(int u, int pre) {
  vector<pair<pair<pair<int, int>, triple>, int>> vec;
  for (int v : w[u]) {
    if (v == pre) continue;
    dfs3(v, u);
    if (val[v].first.first) {
      vec.push_back(make_pair(val[v], v));
    }
  }
  if (vec.size() >= 2) {
    sort(vec.begin(), vec.end(), greater<pair<pair<pair<int, int>, triple>, int>>());
    auto &x = vec[0].first, &y = vec[1].first;
    val[u] = x;
    int a = x.first.first + y.first.first - 2 * dep[u];
    int b = x.first.second + y.first.second;
    auto c = make_pair(a, b);
    if (c > ans) {
      ans = c;
      x1 = x.second.v1, y1 = y.second.v1;
      x2 = x.second.v2, y2 = y.second.v2;
    }
  } else {
    if (vec.size() == 1) {
      val[u] = vec[0].first;
    } else if (deg[u] >= 3) {
      assert(downdis[u].size() >= 2);
      auto &x = downdis[u][0].first, &y = downdis[u][1].first;
      int tp = x.first + y.first - 2 * dep[u];
      val[u] = make_pair(make_pair(dep[u], tp), triple(u, x.second, y.second));
    } else {
      val[u] = make_pair(make_pair(0, 0), triple());
    }
    if (vec.size() == 1 && deg[u] >= 3) {
      vector<pair<int, int>> cand;
      cand.push_back(updis[u]);
      int up = min(3, (int)downdis[u].size());
      for (int i = 0; i < up; ++i) {
        if (downdis[u][i].second == vec[0].second)  continue;
        cand.push_back(downdis[u][i].first);
      }
      assert(cand.size() >= 2);
      sort(cand.begin(), cand.end(), greater<pair<int, int>>());
      auto &x = vec[0].first;
      int a = x.first.first - dep[u];
      int b = x.first.second + cand[0].first + cand[1].first;
      auto c = make_pair(a, b);
      if (c > ans) {
        ans = c;
        x1 = x.second.v1, y1 = cand[0].second;
        x2 = x.second.v2, y2 = cand[1].second;
      }
    }
  }
}
int main() {
  int n;
  scanf("%d", &n);
  for (int i = 1; i < n; ++i) {
    int u, v;
    scanf("%d%d", &u, &v);
    w[u].push_back(v);
    w[v].push_back(u);
    ++deg[u]; ++deg[v];
  }
  ans = make_pair(0, 0);
  dfs1(1, 0, -1);
  dfs2(1, -1);
  dfs3(1, -1);
  printf("%d %d\n%d %d\n", x1, y1, x2, y2);
  return 0;
}

CodeForces 1073F Choosing Two Paths的更多相关文章

  1. [codeforces 293]B. Distinct Paths

    [codeforces 293]B. Distinct Paths 试题描述 You have a rectangular n × m-cell board. Some cells are alrea ...

  2. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  3. Codeforces 219D Choosing Capital for Treeland

    http://codeforces.com/problemset/problem/219/D 题目大意: 给出一棵树,但是它的边是有向边,选择一个城市,问最少调整多少条边的方向能使一个选中城市可以到达 ...

  4. (纪念第一道完全自己想的树DP)CodeForces 219D Choosing Capital for Treeland

    Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes inpu ...

  5. CodeForces 219D Choosing Capit

    题目链接:http://codeforces.com/contest/219/problem/D 题目大意: 给定一个n个节点的数和连接n个节点的n - 1条有向边,现在要选定一个节点作为起始节点,从 ...

  6. Codeforces 219D - Choosing Capital for Treeland(树形dp)

    http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...

  7. 【CodeForces】870 F. Paths

    [题目]F. Paths [题意]给定数字n,图上有编号为1~n的点,两点当且仅当gcd(u,v)≠1时有连边,定义d(u,v)为两点间最短距离(若不连通则为0),求Σd(u,v),1<=u&l ...

  8. Codeforces 219D Choosing Capital for Treeland:Tree dp

    题目链接:http://codeforces.com/problemset/problem/219/D 题意: 给你一棵树,n个节点. 树上的边都是有向边,并且不一定是从父亲指向儿子的. 你可以任意翻 ...

  9. Codeforces 643G - Choosing Ads(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先考虑 \(p>50\) 的时候怎么处理,也就是求一个区间的绝对众数.我们知道众数这个东西是不能用线段树直接维护的,因为对于区间 ...

随机推荐

  1. 使用ES6+Vue+webpack+gulp构建新一代Web应用

    1.推荐学习网站:Vue.js中国 2.Demo环境搭建: 2.1环境配置 安装nodejs环境,具体内容可以百度: 新建一个文件夹: mkdir VUE-ES6-WebPack 全局安装gulp: ...

  2. JS前端创建CSV或Excel文件并浏览器导出下载

    长期以来,在做文件下载功能的时候都是前端通过ajax把需要生成的文件的内容参数传递给后端,后端通过Java语言将文件生成在服务器,然后返回一个文件下载的连接地址url.前端通过location.hre ...

  3. Httprunner学习

    一.简介 HttpRunner 是一款面向 HTTP(S) 协议的通用测试框架,只需编写维护一份YAML/JSON脚本,即可实现自动化测试.性能测试.线上监控.持续集成等多种测试需求. 核心特性: 继 ...

  4. 《细说PHP》第二版--读书笔记

    第五章 PHP的基本语法 5.2.4 在程序中使用空白的处理 5.3 变量 5.3.1 变量的声明 在php中变量的声明必须是使用一个$符号,后面跟变量名来表示 unset()函数释放指定变量 iss ...

  5. 《AngularJS权威教程》

    第二章.数据绑定 2.2 简单的数据绑定 <!DOCTYPE html> <html ng-app> <head> <title>Simple app& ...

  6. datetime24小时格式和12小时格式

    12:DateTime.Now.ToString("hh:mm:ss") 24:DateTime.Now.ToString("HH:mm:ss")

  7. net.exe use命令的使用

    net.exe use 查看当前的连接 net.exe use * /del /y 断开所有连接 net.exe use \\server\share "password" /us ...

  8. MySQL基础之 索引

    MySQL索引讲解 索引的好处: MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度. 打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么 ...

  9. ArcGIS Earth1.9最新版安装和使用教程

    1.下载ArcGIS Earth 官网下载地址:https://www.esri.com/en-us/arcgis/products/arcgis-earth 在这个网页的最下面填上信息,就可以下载了 ...

  10. 《面向对象程序设计》六 GUI

    git传送门 我这无药可救的拖延症和懒癌orz 主界面 文件读取界面 提示界面 最初选择vs+mfc,发现许多自动生成的代码读不懂(不须懂),尝试qt后感觉人生迎来了希望,看了推荐的视频与教程稍微了解 ...