For a given undirected graph with N vertices and E edges, please list all the connected components by both DFS and BFS. Assume that all the vertices are numbered from 0 to N-1. While searching, assume that we always start from the vertex with the smallest index, and visit its adjacent vertices in ascending order of their indices.

Input Specification:

Each input file contains one test case. For each case, the first line gives two integers N (0<N<=10) and E, which are the number of vertices and the number of edges, respectively. Then E lines follow, each described an edge by giving the two ends. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in each line a connected component in the format "{ v1 v2 ... vk }". First print the result obtained by DFS, then by BFS.

Sample Input:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

Sample Output:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

这题比较水……就是写个图的DFS和BFS……当然DFS是遍历到这个点才标记该点已经被访问,并且已经访问过的点就不要再去访问了,不然如果图中有环的话就一直递归下去了,BFS的话是只要入队就把相应节点标记(不用管它有没有遍历到,因为只要入队肯定会遍历到),这样标记过的点就不用再入队了,从而避免了重复入队的发生。

下面是代码:

//
//  main.c
//  List Components
//
//  Created by 余南龙 on 2016/12/6.
//  Copyright © 2016年 余南龙. All rights reserved.
//

#include <stdio.h>
#include <string.h>

#define MAXV 10000
int Graph[MAXV][MAXV];
int visit[MAXV], connected[MAXV];
int N, E, top;

void DFS(int v){
    int i;

    connected[++top] = v;
    visit[v] = ;
    ; i < N; i++){
         == Graph[v][i]&& == visit[i]){
            DFS(i);
        }
    }
}

void BFS(int v){
    ];
    , j = , i;

    Q[++tail] = v;
    visit[Q[j]] = ;
    ){
        connected[++top] = Q[j];
        ; i < N; i++){
             == Graph[Q[j]][i]&& == visit[i]){
                Q[++tail] = i;
                visit[i] = ;
            }
        }
        j++;
        if(tail < j){
            break;
        }
    }
}

void Init(){
    int i, u, v;

    scanf("%d%d", &N, &E);
    ; i < E; i++){
        scanf("%d%d", &u, &v);
        Graph[u][v] = Graph[v][u] = ;
    }
}

void Output(){
    int i;

    printf("{ ");
    ; i <= top; i++){
        printf("%d ", connected[i]);
    }
    printf("}\n");
}

int main(){
    int j;
    Init();
    memset(visit, , MAXV * sizeof(int));
    top = -;
    ; j < N; j++){
         == visit[j]){
            DFS(j);
            Output();
            top = -;
        }
    }
    memset(visit, , MAXV * sizeof(int));
    top = -;
    ; j < N; j++){
         == visit[j]){
            BFS(j);
            Output();
            top = -;
        }
    }
    ;
}

PTA List Components的更多相关文章

  1. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  2. 浙大PTA - - File Transfer

    题目链接:https://pta.patest.cn/pta/test/1342/exam/4/question/21732 #include "iostream" #includ ...

  3. pta 编程题13 File Transfer

    其它pta数据结构编程题请参见:pta 这道题考察的是union-find并查集. 开始把数组中每个元素初始化为-1,代表没有父节点.为了使树更加平衡,可以让每一个连通分量的树根的负值代表这个连通分量 ...

  4. PTA 05-树8 File Transfer (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/670 5-8 File Transfer   (25分) We have a netwo ...

  5. angular2系列教程(三)components

    今天,我们要讲的是angualr2的components. 例子

  6. 【shadow dom入UI】web components思想如何应用于实际项目

    回顾 经过昨天的优化处理([前端优化之拆分CSS]前端三剑客的分分合合),我们在UI一块做了几个关键动作: ① CSS入UI ② CSS作为组件的一个节点而存在,并且会被“格式化”,即选择器带id前缀 ...

  7. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  8. Web Components初探

    本文来自 mweb.baidu.com 做最好的无线WEB研发团队 是随着 Web 应用不断丰富,过度分离的设计也会带来可重用性上的问题.于是各家显神通,各种 UI 组件工具库层出不穷,煞有八仙过海之 ...

  9. [备忘] Automatically reset Windows Update components

    这两天遇到Windows 10的更新问题,官方有一个小工具,可以用来修复Windows Update的问题,备忘如下 https://support.microsoft.com/en-us/kb/97 ...

随机推荐

  1. UI Automator Viewer获取手机镜像时报错

    使用UI Automator Viewer获取手机镜像时报错,具体信息如下: Error while obtaining UI hierarchy XML file: com.android.ddml ...

  2. ORA-12154: TNS:could not resolve the connect identifier specified

    场景: .Net程序无法连接到数据库 现象: 2015/8/26 11:02:03 ORA-12154: TNS:could not resolve the connect identifier sp ...

  3. Eclipse编辑XML文件的代码提示

    1.Eclipse无法解析的情形 Eclipse中编辑XML文件时,能够代码自动提示,是因为在XML头部引入了DTD文件(文档类型定义),Eclipse就是通过解析这个DTD文件,来达到代码提示的功能 ...

  4. Windows下运行python脚本报错“ImportError: No Module named ...”的解决方法

    之前遇到一个问题,在Pycharm或IPython之类的IDE上运行脚本正常,但是直接运行或cmd命令行运行的时候报了模块未能找到的错误--ImportError: No Module named . ...

  5. 【javascript基础】7、继承

    前言 由于本人水平有限,所以有些高手觉得现在写的内容偏容易,要一点点来嘛,今天和大家学习或者复习一下javascript的继承.我也就是尽量写吧······ 继承 javascript的继承其实主要就 ...

  6. jquery 监听radio选中,取值

    $(document).ready(function(){ $("input[name=discount]").each(function(){ $(this).click(fun ...

  7. nginx/Windows-1.9.3启动脚本

    启动nginx.bat @echo off D: cd D:\Program Files\nginx-1.9.3 tasklist | findstr /i "nginx.exe" ...

  8. 转:LoadRunner负载测试之Windows常见性能计数器,分析服务器性能瓶颈

    发布于2012-10-8,来源:博客园 监测对象 System(系统) l %Total Processor Time 系统中所有处理器都处于繁忙状态的时间百分比,对于多处理器系统来说,该值可以反映所 ...

  9. C#(Winform) Http 发送数据

    Get方式 private string HttpGet(string url, string postData) { HttpWebRequest request = (HttpWebRequest ...

  10. Linux下grep命令

    2.grep命令 grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本 ...