lightoj.1048.Conquering Keokradong(二分 + 贪心)
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
This winter we are going on a trip to Bandorban. The main target is to climb up to the top of Keokradong. So, we will use a trail. The trail is a continuous marked footpath that goes from Bandorban to Keokradong.
Part of the experience is also the route planning of the trip. We have a list of all possible campsites that we can use along the way and we want to do this trip so that we only stop K nights to camp. We also know in advance the distance between consecutive campsites and we are only allowed to camp at a campsite. Our goal is to plan the trip so that we minimize the maximum amount of walking done in a single day. In other words, if our trip involves 2 nights (3 days of walking), and we walk 9, 10, 5 miles on each day respectively, the cost (maximum amount of walking done in one day) is 10. Another schedule that involves walking 9, 6, 9 miles on each day has cost 9.
Given the distances between N consecutive campsites of a trail and given the number of nights for your trip, K, your task is to devise a camping strategy for the specified trail such that it minimizes the maximum amount of walking done in a single day. Note that the first distance value given is the distance from our start-point of the trail to our 1st campsite, and the last distance value given is the distance from our Nth campsite to our end-point of the trail.
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case contains of two integers, the number of campsites, N (1 ≤ N ≤ 1000) and the number of nights of the trip, K (1 ≤ K ≤ min(N, 300)). The following N + 1 lines indicate the distance in miles between consecutive campsite locations. All the integers will be positive and less than10000.
Output
For each case of input you have to print the case number and the minimized cost as described above. Then print K+1 lines, each containing the amount of distance covered in ith day. As there can be many solutions, the primary target is to find the one which ensures that each day we have to walk some distance. For ties, print the one where the distance covered in first day is maximum, then the distance covered in second day is maximum and so on.
Sample Input
1
4 3
7
2
6
4
5
Sample Output
Case 1: 8
7
8
4
5
#include<stdio.h>
#include<string.h>
#include<algorithm>
const int inf = 0x3f3f3f3f ;
int n , m ;
int T ;
int a[] ;
int l , r ; bool solve (int mid)
{
int tmp = , cnt = ;
for (int i = ; i < n ; i ++) {
tmp += a[i] ;
if (tmp > mid) {
tmp = a[i] ;
cnt ++ ;
}
}
cnt ++ ;
return cnt > m ;
} int main ()
{
//freopen ("a.txt" , "r" , stdin ) ;
scanf ("%d" , &T) ;
int cas = ;
while (T --) {
scanf ("%d%d" , &n , &m ) ;
n ++ ; m ++ ;
l = - inf ;
r = ;
for (int i = ; i < n ; i ++) {
scanf ("%d" , &a[i]) ;
l = std::max (a[i] , l ) ;
r += a[i] ;
}
while (l <= r) {
int mid = ( l + r ) / ;
if (solve (mid) ) l = mid + ;
else r = mid - ;
}
printf ("Case %d: %d\n" , cas ++ , l ) ;
int sum = ;
int cnt = ;
for (int i = ; i < n ; i ++) {
sum += a[i] ;
if (sum > l) {
printf ("%d\n" , sum - a[i]) ;
sum = a[i] ;
cnt ++ ;
}
if (m - cnt + i >= n) {
printf ("%d\n" , sum ) ;
for (int j = i + ; j < n ; j ++) printf ("%d\n" , a[j]) ;
break ;
}
}
}
return ;
}
initial l = max{a[]} , r = sum {a[]} ;
很明显我们要求的x肯定在[l,r]这个区间内。
我们也能很容易求出:当组合后各个堆中最大的x已知时,至少需要走的天数 day。
所以我们令mid = (l + r)/ 2 ; 并求出对应的 day,if day > (k + 1) , 说明x的值应在[mid + 1,r]上 ; else , 便在[l,mid - 1]上(ps:至于为什么day == k + 1是也定位在这一块,是因为我们想令day “minimize”)。
而且因为我们所求的最后x,是指至少需要走的天数,所以很多情况下会比k + 1小,所以输出时应尽量让前面的a[i]相加贴近x,在最后到。。。就单个输出啊a[i]来补到k+1个。
lightoj.1048.Conquering Keokradong(二分 + 贪心)的更多相关文章
- 1048 - Conquering Keokradong
1048 - Conquering Keokradong PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: ...
- Conquering Keokradong && Get the Containers(二分)
Conquering Keokradong Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- Codeforces Gym 100231B Intervals 线段树+二分+贪心
Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...
- 2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 二分+贪心
/** 题目:2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 链接:http://codeforces.com/gym/101194 题意:给n个木块,堆 ...
- 【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操 二分+贪心
题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. ...
- Codeforces_732D_(二分贪心)
D. Exams time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- CF732D Exams 二分 贪心
思路:二分+贪心 提交次数:10次以上 错因:刚开始以为二分(边界,$+1or-1$)写错了,调了半天,后来才发现是$ck()$写错了.开始只判了最后是否小于零,而应该中间一旦小于零就$return\ ...
- $CF949D\ Curfew$ 二分/贪心
正解:二分/贪心 解题报告: 传送门$QwQ$ 首先这里是二分还是蛮显然的?考虑二分那个最大值,然后先保证一个老师是合法的再看另一个老师那里是否合法就成$QwQ$. 发现不太会搞这个合不合法的所以咕了 ...
- $bzoj2067\ szn$ 二分+贪心
正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...
随机推荐
- POJ 1804 Brainman(归并排序)
传送门 Description Background Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted ...
- linux中配置NTP基本操作
计算机的系统时间是由计算机内的石英晶体震荡电路以固定的震荡频率产生的date 查看当前时区vim /etc/sysconfig/clock 修改时区配置文件ZONE="America/Ne ...
- Swift开发之 (01) 语法
一 Swift Swift,苹果于2014年WWDC(苹果开发者大会)发布的新开发语言,可与Objective-C*共同运行于Mac OS和iOS平台,用于搭建基于苹果平台的应用程序. Swift是一 ...
- JZOJ P1830[9.30]送牛奶
传送门 临近NOIp,写一些简单题. 二分+BFS,注意的是要把数组开小点,有效减少memset的时间. //OJ 1830 //by Cydiater //2016.9.22 #include &l ...
- 一个C#解决方案中各文件夹存放了些什么
在VS2015中"生成"(Build)的过程: Source Code(.cs) -> Compile -> Object File(intermediate file ...
- Git删除tag
git tag -d v2016062101 删除本地tag git push origin --delete tag v2016062101 删除远程tag
- vs------各种错误解决方法
错误:命名空间System.Net中不存在类型或命名空间名“Http”,或工程里面“引用”的文件太少 转载:http://www.asp.net/mvc/mvc4 错误:LD.exe 已退出,代码为- ...
- 批处理学习:for语句详解【经典】
大纲 一 前言 二 for语句的基本用法 三 for /f (delims.tokens.skip.eol.userbackq.变量延迟) 四 for /r (递归遍历) 五 for /d (遍历目录 ...
- 《css3实战》读书笔记 第一章 基于CSS需求而编写的HTML.
笔记说明 <CSS3实战手册第3版(影印版)>可以消除Web设计工作的痛苦,并且带给你:HTML--重新入门.如果你是HTML新手,你会学到如何以CSS友好的方式进行基本页面构造.若你是H ...
- -[UIWindow viewForFirstBaselineLayout]: unrecognized selector sent to instance
#ifdef DEBUG #import <UIKit/UIKit.h> #import <objc/runtime.h> @implementation UIView (Fi ...