CAP概述

C: Consistency 一致性

A: Availability 可用性

P:Partition Tolerance分区容错性

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,最多只能同时较好的满足两个。

CAP的定义

1、C: Consistency 一致性

对于一致性,可以分为从客户端和服务端两个不同的视角。从客户端来看,一致性主要指的是多并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。一致性是因为有并发读写才有的问题,因此在理解一致性的问题时,一定要注意结合考虑并发读写的场景。

从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。如果能容忍后续的部分或者全部访问不到,则是弱一致性。如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。

2、A: Availability 可用性

对于一个可用性的分布式系统,每一个非故障的节点必须对每一个请求作出响应。也就是,该系统使用的任何算法必须最终终止。当同时要求分区容忍性时,这是一个很强的定义:即使是严重的网络错误,每个请求必须终止。

好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。可用性通常情况下可用性和分布式数据冗余,负载均衡等有着很大的关联。

3、P:Partition Tolerance分区容错性

分区容错性和扩展性紧密相关。在分布式应用中,可能因为一些分布式的原因导致系统无法正常运转。好的分区容错性要求能够使应用虽然是一个分布式系统,而看上去却好像是在一个可以运转正常的整体。比如现在的分布式系统中有某一个或者几个机器宕掉了,其他剩下的机器还能够正常运转满足系统需求,或者是机器之间有网络异常,将分布式系统分隔未独立的几个部分,各个部分还能维持分布式系统的运作,这样就具有好的分区容错性。

CAP原理的证明

如上图,是我们证明CAP的基本场景,网络中有两个节点N1和N2,可以简单的理解N1和N2分别是两台计算机,他们之间网络可以连通,N1中有一个应用程序A,和一个数据库V,N2也有一个应用程序B2和一个数据库V。现在,A和B是分布式系统的两个部分,V是分布式系统的数据存储的两个子数据库。

在满足一致性的时候,N1和N2中的数据是一样的,V0=V0。在满足可用性的时候,用户不管是请求N1或者N2,都会得到立即响应。在满足分区容错性的情况下,N1和N2有任何一方宕机,或者网络不通的时候,都不会影响N1和N2彼此之间的正常运作。

如上图,是分布式系统正常运转的流程,用户向N1机器请求数据更新,程序A更新数据库Vo为V1,分布式系统将数据进行同步操作M,将V1同步的N2中V0,使得N2中的数据V0也更新为V1,N2中的数据再响应N2的请求。

这里,可以定义N1和N2的数据库V之间的数据是否一样为一致性;外部对N1和N2的请求响应为可用行;N1和N2之间的网络环境为分区容错性。这是正常运作的场景,也是理想的场景,然而现实是残酷的,当错误发生的时候,一致性和可用性还有分区容错性,是否能同时满足,还是说要进行取舍呢?

作为一个分布式系统,它和单机系统的最大区别,就在于网络,现在假设一种极端情况,N1和N2之间的网络断开了,我们要支持这种网络异常,相当于要满足分区容错性,能不能同时满足一致性和响应性呢?还是说要对他们进行取舍。

假设在N1和N2之间网络断开的时候,有用户向N1发送数据更新请求,那N1中的数据V0将被更新为V1,由于网络是断开的,所以分布式系统同步操作M,所以N2中的数据依旧是V0;这个时候,有用户向N2发送数据读取请求,由于数据还没有进行同步,应用程序没办法立即给用户返回最新的数据V1,怎么办呢?有二种选择,第一,牺牲数据一致性,响应旧的数据V0给用户;第二,牺牲可用性,阻塞等待,直到网络连接恢复,数据更新操作M完成之后,再给用户响应最新的数据V1。

这个过程,证明了要满足分区容错性的分布式系统,只能在一致性和可用性两者中,选择其中一个。

CAP实践中的取舍

1、满足一致性,可用性的系统,通常在可扩展性上不太强大,例如下面的产品:

Traditional RDBMSs like Postgres,MySQL, etc (relational)

Vertica (column-oriented)

Aster Data (relational)

Greenplum (relational)

2、满足一致性,分区容忍必的系统,通常用户操作响应上不太稳定,例如下面的产品:

BigTable (column-oriented/tabular)

Hypertable (column-oriented/tabular)

HBase (column-oriented/tabular)

MongoDB (document-oriented)

Terrastore (document-oriented)

Redis (key-value)

Scalaris (key-value)

MemcacheDB (key-value)

Berkeley DB (key-value)

3、满足可用性,分区容忍性的系统,通常可能对一致性要求低一些,例如下面的产品:

Dynamo (key-value)

Voldemort (key-value)

Tokyo Cabinet (key-value)

KAI (key-value)

Cassandra (column-oriented/tabular)

CouchDB (document-oriented)

SimpleDB (document-oriented)

Riak (document-oriented)

参考资料:

CAP原理与最终一致性

佳文分享:CAP定理

Brewer’s CAP Theorem

NoSQL学习笔记(二)之CAP理论

CAP定理

转载自: http://www.xiaoyaochong.net/wordpress/index.php/2013/07/27/cap%e5%8e%9f%e7%90%86%e7%9a%84%e8%af%81%e6%98%8e/ | 逍遥冲

CAP原理的证明的更多相关文章

  1. CAP原理详解

    转载 https://blog.csdn.net/u013332124/article/details/82874178 文章目录 一.CAP原理介绍 对CAP原理的一些常见的理解误区 二.CAP原理 ...

  2. NOSQL数据模型和CAP原理

    NOSQL数据模型和CAP原理 http://blog.sina.com.cn/s/blog_7800d9210100t33v.html 我本来一直觉得NoSQL其实很容易理解的,我本身也已经对NoS ...

  3. [转]CAP原理与最终一致性 强一致性 透析

    在足球比赛里,一个球员在一场比赛中进三个球,称之为帽子戏法(Hat-trick).在分布式数据系统中,也有一个帽子原理(CAP Theorem),不过此帽子非彼帽子.CAP原理中,有三个要素: 一致性 ...

  4. CAP原理、一致性模型、BASE理论和ACID特性

    CAP原理 在理论计算机科学中,CAP定理(CAP theorem),又被称作布鲁尔定理(Brewer's theorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点: 一致性(Con ...

  5. 在分布式数据库中CAP原理CAP+BASE

    本篇博文的内容均来源于网络,本人只是整理,仅供学习! 一.关系型数据库 关系型数据库遵循ACID规则 事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性: 1.A (At ...

  6. 大数据 --> CAP原理和最终一致性

    CAP原理和最终一致性 CAP原理和最终一致性(Eventually Consistency)

  7. CAP原理中的一致性

    CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布式数据系统,就是在 ...

  8. 对CAP原理的理解

    对CAP原理的理解 CAP原理按照定义,指的是C(Consistency)一致性,A(Availability)可用性,P(Partition tolerance)分区容错性在一个完整的计算机系统中三 ...

  9. Nosql数据库的四大分类及分布式数据库CAP原理

    1. Nosql数据库的四大分类 2. 分布式数据库CAP原理 2.1 关系型数据库事务遵循的ACID规则 首先了解传统关系型数据库事务遵循的ACID规则: 原子性(Atomicity):事务里的所有 ...

随机推荐

  1. 如何利用Pre.im分发iOS测试包

    大众创新万众创业,在移动互联网的风口,移动APP开发与测试发展方兴未艾,受到了越来越多的重视.相较 iOS,Android 的开发环境更加开放.Android 开发者要测试应用时,只需发个 APK 安 ...

  2. request,session,application

    JSP 的3个内置对象request,session,application,其实都有一个作用域,这些对象内部有一个Map成员用于存放数据,比如session对象的setAttribute(key,v ...

  3. 让vc2010的项目在vc2012也能直接使用,而不必修改PlatformToolSet

    在Visual Studio 2010新建的项目到2012里打开会要求修改PlatformToolset的值,从v100改为v110.如果这个项目需要进版本管理(VCS,如git, svn),这将造成 ...

  4. dotNet使用HttpWebRequest模拟浏览器

    在编写网络爬虫时,HttpWebRequest几乎可以完成绝大多数网站的抓取,为了更好的使用这一技术,我将常用的几个功能进行了封装,以方便调用.这个类已经在多个项目中得到使用,主要解决了Cookies ...

  5. android 中Activity的onStart()和onResume()的区别是什么

    首先你要知道Activity的四种状态:Active/Runing 一个新 Activity 启动入栈后,它在屏幕最前端,处于栈的最顶端,此时它处于可见并可和用户交互的激活状态.Paused 当 Ac ...

  6. spring 注入一个以枚举类型对象

    1.枚举 在实际编程中,往往存在着这样的“数据集”,它们的数值在程序中是稳定的,而且“数据集”中的元素是有限的. 例如星期一到星期日七个数据元素组成了一周的“数据集”,春夏秋冬四个数据元素组成了四季的 ...

  7. AC日记——合法C标识符 openjudge 1.7 06

    06:合法 C 标识符 总时间限制:  1000ms 内存限制:   65536kB 描述 给定一个不包含空白符的字符串,请判断是否是C语言合法的标识符号(注:题目保证这些字符串一定不是C语言的保留字 ...

  8. MySQL 5.7.x 配置教程

    软件环境 操作系统:windows 10 x64 企业版 MySQL:mysql-5.7.11-winx64 MySQL官网下载:http://downloads.mysql.com/archives ...

  9. 什么是UV?

    转自http://www.cnblogs.com/jenry/p/4083415.html 1.什么是UV?   对于三维模型,有两个最重要的坐标系统,一是顶点的位置(X,Y,Z)坐标,另一个就是UV ...

  10. Android驱动入门-LED--HAL硬件访问服务层②

    硬件平台: FriendlyARM Tiny4412 Cortex-A9 操作系统: UBUNTU 14.04 LTS 时间:2016-09-21  16:58:56 为了避免访问冲突,则创建了硬件访 ...