CAP概述

C: Consistency 一致性

A: Availability 可用性

P:Partition Tolerance分区容错性

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,最多只能同时较好的满足两个。

CAP的定义

1、C: Consistency 一致性

对于一致性,可以分为从客户端和服务端两个不同的视角。从客户端来看,一致性主要指的是多并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。一致性是因为有并发读写才有的问题,因此在理解一致性的问题时,一定要注意结合考虑并发读写的场景。

从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。如果能容忍后续的部分或者全部访问不到,则是弱一致性。如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。

2、A: Availability 可用性

对于一个可用性的分布式系统,每一个非故障的节点必须对每一个请求作出响应。也就是,该系统使用的任何算法必须最终终止。当同时要求分区容忍性时,这是一个很强的定义:即使是严重的网络错误,每个请求必须终止。

好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。可用性通常情况下可用性和分布式数据冗余,负载均衡等有着很大的关联。

3、P:Partition Tolerance分区容错性

分区容错性和扩展性紧密相关。在分布式应用中,可能因为一些分布式的原因导致系统无法正常运转。好的分区容错性要求能够使应用虽然是一个分布式系统,而看上去却好像是在一个可以运转正常的整体。比如现在的分布式系统中有某一个或者几个机器宕掉了,其他剩下的机器还能够正常运转满足系统需求,或者是机器之间有网络异常,将分布式系统分隔未独立的几个部分,各个部分还能维持分布式系统的运作,这样就具有好的分区容错性。

CAP原理的证明

如上图,是我们证明CAP的基本场景,网络中有两个节点N1和N2,可以简单的理解N1和N2分别是两台计算机,他们之间网络可以连通,N1中有一个应用程序A,和一个数据库V,N2也有一个应用程序B2和一个数据库V。现在,A和B是分布式系统的两个部分,V是分布式系统的数据存储的两个子数据库。

在满足一致性的时候,N1和N2中的数据是一样的,V0=V0。在满足可用性的时候,用户不管是请求N1或者N2,都会得到立即响应。在满足分区容错性的情况下,N1和N2有任何一方宕机,或者网络不通的时候,都不会影响N1和N2彼此之间的正常运作。

如上图,是分布式系统正常运转的流程,用户向N1机器请求数据更新,程序A更新数据库Vo为V1,分布式系统将数据进行同步操作M,将V1同步的N2中V0,使得N2中的数据V0也更新为V1,N2中的数据再响应N2的请求。

这里,可以定义N1和N2的数据库V之间的数据是否一样为一致性;外部对N1和N2的请求响应为可用行;N1和N2之间的网络环境为分区容错性。这是正常运作的场景,也是理想的场景,然而现实是残酷的,当错误发生的时候,一致性和可用性还有分区容错性,是否能同时满足,还是说要进行取舍呢?

作为一个分布式系统,它和单机系统的最大区别,就在于网络,现在假设一种极端情况,N1和N2之间的网络断开了,我们要支持这种网络异常,相当于要满足分区容错性,能不能同时满足一致性和响应性呢?还是说要对他们进行取舍。

假设在N1和N2之间网络断开的时候,有用户向N1发送数据更新请求,那N1中的数据V0将被更新为V1,由于网络是断开的,所以分布式系统同步操作M,所以N2中的数据依旧是V0;这个时候,有用户向N2发送数据读取请求,由于数据还没有进行同步,应用程序没办法立即给用户返回最新的数据V1,怎么办呢?有二种选择,第一,牺牲数据一致性,响应旧的数据V0给用户;第二,牺牲可用性,阻塞等待,直到网络连接恢复,数据更新操作M完成之后,再给用户响应最新的数据V1。

这个过程,证明了要满足分区容错性的分布式系统,只能在一致性和可用性两者中,选择其中一个。

CAP实践中的取舍

1、满足一致性,可用性的系统,通常在可扩展性上不太强大,例如下面的产品:

Traditional RDBMSs like Postgres,MySQL, etc (relational)

Vertica (column-oriented)

Aster Data (relational)

Greenplum (relational)

2、满足一致性,分区容忍必的系统,通常用户操作响应上不太稳定,例如下面的产品:

BigTable (column-oriented/tabular)

Hypertable (column-oriented/tabular)

HBase (column-oriented/tabular)

MongoDB (document-oriented)

Terrastore (document-oriented)

Redis (key-value)

Scalaris (key-value)

MemcacheDB (key-value)

Berkeley DB (key-value)

3、满足可用性,分区容忍性的系统,通常可能对一致性要求低一些,例如下面的产品:

Dynamo (key-value)

Voldemort (key-value)

Tokyo Cabinet (key-value)

KAI (key-value)

Cassandra (column-oriented/tabular)

CouchDB (document-oriented)

SimpleDB (document-oriented)

Riak (document-oriented)

参考资料:

CAP原理与最终一致性

佳文分享:CAP定理

Brewer’s CAP Theorem

NoSQL学习笔记(二)之CAP理论

CAP定理

转载自: http://www.xiaoyaochong.net/wordpress/index.php/2013/07/27/cap%e5%8e%9f%e7%90%86%e7%9a%84%e8%af%81%e6%98%8e/ | 逍遥冲

CAP原理的证明的更多相关文章

  1. CAP原理详解

    转载 https://blog.csdn.net/u013332124/article/details/82874178 文章目录 一.CAP原理介绍 对CAP原理的一些常见的理解误区 二.CAP原理 ...

  2. NOSQL数据模型和CAP原理

    NOSQL数据模型和CAP原理 http://blog.sina.com.cn/s/blog_7800d9210100t33v.html 我本来一直觉得NoSQL其实很容易理解的,我本身也已经对NoS ...

  3. [转]CAP原理与最终一致性 强一致性 透析

    在足球比赛里,一个球员在一场比赛中进三个球,称之为帽子戏法(Hat-trick).在分布式数据系统中,也有一个帽子原理(CAP Theorem),不过此帽子非彼帽子.CAP原理中,有三个要素: 一致性 ...

  4. CAP原理、一致性模型、BASE理论和ACID特性

    CAP原理 在理论计算机科学中,CAP定理(CAP theorem),又被称作布鲁尔定理(Brewer's theorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点: 一致性(Con ...

  5. 在分布式数据库中CAP原理CAP+BASE

    本篇博文的内容均来源于网络,本人只是整理,仅供学习! 一.关系型数据库 关系型数据库遵循ACID规则 事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性: 1.A (At ...

  6. 大数据 --> CAP原理和最终一致性

    CAP原理和最终一致性 CAP原理和最终一致性(Eventually Consistency)

  7. CAP原理中的一致性

    CAP原理指的是,这三个要素最多只能同时实现两点,不可能三者兼顾.因此在进行分布式架构设计时,必须做出取舍.而对于分布式数据系统,分区容忍性是基本要求,否则就失去了价值.因此设计分布式数据系统,就是在 ...

  8. 对CAP原理的理解

    对CAP原理的理解 CAP原理按照定义,指的是C(Consistency)一致性,A(Availability)可用性,P(Partition tolerance)分区容错性在一个完整的计算机系统中三 ...

  9. Nosql数据库的四大分类及分布式数据库CAP原理

    1. Nosql数据库的四大分类 2. 分布式数据库CAP原理 2.1 关系型数据库事务遵循的ACID规则 首先了解传统关系型数据库事务遵循的ACID规则: 原子性(Atomicity):事务里的所有 ...

随机推荐

  1. 【转发】NPAPI开发详解,Windows版

    NPAPI开发详解,Windows版 9 jiaofeng601, +479 9人支持,来自Meteor.猪爪.hanyuxinting更多 .是非黑白 .Yuan Xulei.hyolin.Andy ...

  2. Linux下Nagios的安装与配置[转]

    一.Nagios简介 Nagios是一款开源的电脑系统和网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报 ...

  3. Windows系统安装Oracle 11g 数据库

    一.下载 http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html以下两网址来源此官方下载页 ...

  4. Linux IPC System V 消息队列

    模型 #include <sys/types.h> #include <sys/ipc.h> #include <sys/msg.h> ftok() //获取key ...

  5. 单源最短路径算法——Dijkstra算法

    #include <stdio.h> #include <stdlib.h> #include <string.h> /* run this program usi ...

  6. Linux rpmbuild命令

    一.简介 rpmbuild命令用于创建软件的二进制包和源代码包. 二.选项 参考:http://blog.sina.com.cn/s/blog_4ba5b45e0102e5r2.html http:/ ...

  7. 用FineReport做的共建共享填报系统

    一.应用背景 随着信息技术的不断发展,快速开发出适合用户业务需求发展的填报报表是势在必然的,因此在不断的研究和分析下针对这一业务特点制作了此报表系统,以使不同开发商之间共建共享数据进行填报和统计分析的 ...

  8. Windows Azure HDInsight 使用技巧

    Windows Azure HDInsight是一个面向大数据的PaaS服务,是PaaS版本的Hadoop.HDInsight是微软与Hortonworks合作的产物.可以理解为Hortonworks ...

  9. [转]在EntityFramework6中执行SQL语句

    本文转自:http://www.cnblogs.com/wujingtao/p/5412329.html 在上一节中我介绍了如何使用EF6对数据库实现CRDU以及事务,我们没有写一句SQL就完成了所有 ...

  10. [转]六款值得推荐的android(安卓)开源框架简介

    本文转自:http://www.jb51.net/article/51052.htm .volley 项目地址 https://github.com/smanikandan14/Volley-demo ...