Kernel Methods (3) Kernel Linear Regression
Linear Regression
线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为:
- 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中:
- \(x_i\)是\(n\)维列向量
- \(y_i\)的值服从正态分布\(N(f(x_i), \sigma_i^2)\), \(f(x_i)\)是关于\(x_i\)的线性函数: \(f(x_i) = w^Tx_i + b\).
为方便起见, 令\(x_i \gets [x_{i0} = 1, x_{i1}, \dots, x_{in}] = [1, x_i^T]^T, w \gets [b, w^T]^T\), \(\therefore f(x_i) = w^Tx_i\), 以期望值作为预测值, 即\(y_i = f(x_i)\)
- 对于测试样本\(x\), 预测\(x\)对应的\(y=f(x)\).
问题对应的损失函数:
\[
L(w) = \sum_{i =1}^m (f(x_i) - y_i)^2 = \sum_{i =1}^m (w^Tx_i - y_i)^2 = ||Xw - Y||^2
\]
其中,
\[
X =
\left[
\begin{matrix}
x_1^T \\ x_2^T \\ \vdots \\ x_m^T
\end{matrix}
\right],
Y = [y_1, \dots, y_m]^T
\]
加上正则项后,
\[
L(w) = ||Xw - Y||^2 + \lambda w^Tw = (Xw - Y)^T(Xw - Y) + \lambda w^Tw, (\lambda > 0)
\]
则
\[
w = argmin L(w)
\]
要使\(L(w)\)取最得小值,
\[
\to \frac {\partial L}{\partial w} = 2X^T(Xw -Y) + 2\lambda w = 0
\]
\[
\to X^TXw + \lambda w =(X^TX + \lambda I) w = X^TY
\]
(\(I\)是一个\(n\)维的单位矩阵)
\[
\to w = (X^TX + \lambda I)^{-1} X^TY
\]
(因为有\(\lambda I\)在, 所以\(X^TX + \lambda I\)一定是可逆的.)
Kernel-based Linear Regression:Theory
不带kernel的线性回归算法得到的模型是一个线性函数 \(f(x) = w^Tx\). 要将它变成非线性的, 一个很常见的做法是手动构造新的多项式特征, 例如: \((a, b) \to (a^2, ab, b^2)\). 这个做法从本质上来说就是一种kernel方法, 只不过因为是手动构造的feature space, 它的feature mapping function \(\Phi\) 是已知了. 当原始输入空间的维度不高时, 这种手动方式当然是一个不错的选择, 但是当维度变高后, 例如100维, 代价就太高了.
使用kernel之后, 上面的损失函数变为:
\[
L(w) = ||Zw - Y||^2 + \lambda w^Tw = (Zw - Y)^T(Zw - Y) + \lambda w^Tw
\]
其中,
\[
Z =
\left[
\begin{matrix}
\Phi(x_1)^T \\ \Phi(x_2)^T \\ \vdots \\ \Phi(x_m)^T
\end{matrix}
\right]
\]
最后得到的\(w\)也相应的变为:
\[
w = (Z^TZ + \lambda I)^{-1} Z^TY
\]
之前已经反复讲过, 使用kernel method \(\kappa\)时, 它对应的\(\Phi\)是未知的. 对kernel linear regression也是如此. 所以现在得到的\(w\)是没法直接用于预测新样本的.
但是当一个新样本\(x\)进来时, (\(x\)不包含1, 但是\(\Phi(x)\)已经像上面那样已经包含了增广项1, 所以式子仍然没有显式的出现\(b\))
\[
y = w^T\Phi(x) = Y^TZ(Z^TZ + \lambda I)^{-1}\Phi(x)
\]
利用等式\(Z(Z^TZ + \lambda I_{n\times n})^{-1} = (ZZ^T + \lambda I_{m\times m})^{-1}Z\),(这个等式通过左右同时乘以相同的矩阵很容易验证.)
\[
y =w^T\Phi(x) = Y^T (ZZ^T + \lambda I)^{-1})Z \Phi(x) = Y^T (K + \lambda I)^{-1} Z\Phi(x) = Y^T (K + \lambda I)^{-1}
\left[\begin{matrix}
\kappa(x_1, x)\\
\kappa(x_2, x)\\
\vdots\\
\kappa(x_m, x)
\end{matrix}\right]
\]
其中, \(K = ZZ^T\)是kernel matrix.
这样一来, 我们在\(\Phi(x)\)未知的情况下得到了测试样本\(x\)的预测值\(y\).
Kernel Methods (3) Kernel Linear Regression的更多相关文章
- Kernel Methods (5) Kernel PCA
先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...
- Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...
- Kernel Methods (4) Kernel SVM
(本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...
- Kernel Methods - An conclusion
Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...
- Kernel Methods (1) 从简单的例子开始
一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)
主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...
- Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...
- 核方法(Kernel Methods)
核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...
随机推荐
- 分布式系统理论之Quorum机制
一,Quorum机制介绍 在分布式系统中有个CAP理论,对于P(分区容忍性)而言,是实际存在 从而无法避免的.因为,分布系统中的处理不是在本机,而是网络中的许多机器相互通信,故网络分区.网络通信故障问 ...
- 第10章 同步设备I/O和异步设备I/O(2)_同步IO和异步IO基础
10.3 执行同步设备I/O (1)对设备读写操作的函数 ①ReadFile/WriteFile函数 参数 描述 hFile 文件句柄 pvBuffer 指向要接收文件数据的缓冲区或把缓冲区数据写入设 ...
- AC日记——阶乘和 openjudge 1.6 15
15:阶乘和 总时间限制: 1000ms 内存限制: 65536kB 描述 用高精度计算出S=1!+2!+3!+…+n!(n≤50) 其中“!”表示阶乘,例如:5!=5*4*3*2*1. 输入正整 ...
- AC日记——输出亲朋字符串 openjudge 1.7 05
05:输出亲朋字符串 总时间限制: 1000ms 内存限制: 65536kB 描述 编写程序,求给定字符串s的亲朋字符串s1. 亲朋字符串s1定义如下:给定字符串s的第一个字符的ASCII值加第二 ...
- flex sdk中mx_internal function getTextField() 这种函数如何调用?
在用flex 开发中,一些函数前打上了 mx_internal 外部调用不了,其实这样写就可以了 xxx.mx_internal::getTextField() 而 xxx.getTextField( ...
- jmeter 与 java http
jmeter 如果对java代码进行测试 1.eclips中创建一个项目,且写一个待测试的简单java代码 2.将jmeter路径下 x:\xx\lxx\Dowxxxxxx\apache-jmeter ...
- poj[1185]炮兵阵地
Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用&quo ...
- noj[1581] 筷子
题目描述 A先生有很多双筷子.确切的说应该是很多根,因为筷子的长度不一,很难判断出哪两根是一双的.这天,A先生家里来了K个客人,A先生留下他们吃晚饭.加上A先生,A夫人和他们的孩子小A,共K+3个人. ...
- Java8 Lambda表达式和流操作如何让你的代码变慢5倍
原文出处:ImportNew 有许许多多关于 Java 8 中流效率的讨论,但根据 Alex Zhitnitsky 的测试结果显示:坚持使用传统的 Java 编程风格——iterator 和 for- ...
- IE 和Firefox的js兼容性总结
IE 和Firefox的js兼容性总结 12 August 2010 11:39 Thursday by 小屋 标签: 浏览器 方法 属性 IT 写法 一.函数和方法差异 1 . getYear()方 ...