Linear Regression

线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为:

  • 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中:

    • \(x_i\)是\(n\)维列向量
    • \(y_i\)的值服从正态分布\(N(f(x_i), \sigma_i^2)\), \(f(x_i)\)是关于\(x_i\)的线性函数: \(f(x_i) = w^Tx_i + b\).
      为方便起见, 令\(x_i \gets [x_{i0} = 1, x_{i1}, \dots, x_{in}] = [1, x_i^T]^T, w \gets [b, w^T]^T\), \(\therefore f(x_i) = w^Tx_i\), 以期望值作为预测值, 即\(y_i = f(x_i)\)
  • 对于测试样本\(x\), 预测\(x\)对应的\(y=f(x)\).

问题对应的损失函数:
\[
L(w) = \sum_{i =1}^m (f(x_i) - y_i)^2 = \sum_{i =1}^m (w^Tx_i - y_i)^2 = ||Xw - Y||^2
\]
其中,
\[
X =
\left[
\begin{matrix}
x_1^T \\ x_2^T \\ \vdots \\ x_m^T
\end{matrix}
\right],
Y = [y_1, \dots, y_m]^T
\]
加上正则项后,
\[
L(w) = ||Xw - Y||^2 + \lambda w^Tw = (Xw - Y)^T(Xw - Y) + \lambda w^Tw, (\lambda > 0)
\]

\[
w = argmin L(w)
\]
要使\(L(w)\)取最得小值,
\[
\to \frac {\partial L}{\partial w} = 2X^T(Xw -Y) + 2\lambda w = 0
\]
\[
\to X^TXw + \lambda w =(X^TX + \lambda I) w = X^TY
\]
(\(I\)是一个\(n\)维的单位矩阵)
\[
\to w = (X^TX + \lambda I)^{-1} X^TY
\]
(因为有\(\lambda I\)在, 所以\(X^TX + \lambda I\)一定是可逆的.)

Kernel-based Linear Regression:Theory

不带kernel的线性回归算法得到的模型是一个线性函数 \(f(x) = w^Tx\). 要将它变成非线性的, 一个很常见的做法是手动构造新的多项式特征, 例如: \((a, b) \to (a^2, ab, b^2)\). 这个做法从本质上来说就是一种kernel方法, 只不过因为是手动构造的feature space, 它的feature mapping function \(\Phi\) 是已知了. 当原始输入空间的维度不高时, 这种手动方式当然是一个不错的选择, 但是当维度变高后, 例如100维, 代价就太高了.
使用kernel之后, 上面的损失函数变为:
\[
L(w) = ||Zw - Y||^2 + \lambda w^Tw = (Zw - Y)^T(Zw - Y) + \lambda w^Tw
\]
其中,
\[
Z =
\left[
\begin{matrix}
\Phi(x_1)^T \\ \Phi(x_2)^T \\ \vdots \\ \Phi(x_m)^T
\end{matrix}
\right]
\]
最后得到的\(w\)也相应的变为:
\[
w = (Z^TZ + \lambda I)^{-1} Z^TY
\]
之前已经反复讲过, 使用kernel method \(\kappa\)时, 它对应的\(\Phi\)是未知的. 对kernel linear regression也是如此. 所以现在得到的\(w\)是没法直接用于预测新样本的.
但是当一个新样本\(x\)进来时, (\(x\)不包含1, 但是\(\Phi(x)\)已经像上面那样已经包含了增广项1, 所以式子仍然没有显式的出现\(b\))
\[
y = w^T\Phi(x) = Y^TZ(Z^TZ + \lambda I)^{-1}\Phi(x)
\]
利用等式\(Z(Z^TZ + \lambda I_{n\times n})^{-1} = (ZZ^T + \lambda I_{m\times m})^{-1}Z\),(这个等式通过左右同时乘以相同的矩阵很容易验证.)
\[
y =w^T\Phi(x) = Y^T (ZZ^T + \lambda I)^{-1})Z \Phi(x) = Y^T (K + \lambda I)^{-1} Z\Phi(x) = Y^T (K + \lambda I)^{-1}
\left[\begin{matrix}
\kappa(x_1, x)\\
\kappa(x_2, x)\\
\vdots\\
\kappa(x_m, x)
\end{matrix}\right]
\]
其中, \(K = ZZ^T\)是kernel matrix.
这样一来, 我们在\(\Phi(x)\)未知的情况下得到了测试样本\(x\)的预测值\(y\).

Kernel Methods (3) Kernel Linear Regression的更多相关文章

  1. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  2. Kernel Methods (2) Kernel function

    几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...

  3. Kernel Methods (4) Kernel SVM

    (本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...

  4. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  5. Kernel Methods (1) 从简单的例子开始

    一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...

  6. Kernel methods on spike train space for neuroscience: a tutorial

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...

  7. PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)

    主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...

  8. Linear Regression with machine learning methods

    Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...

  9. 核方法(Kernel Methods)

    核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...

随机推荐

  1. Windows英文版GitHub客户端使用操作流程图文攻略教程现没中文版

    Git是一个分布式的版本控制系统,最初由Linus Torvalds编写,用作Linux内核代码的管理.作为一个程序员,我们需要掌握其用法. 作为开源代码库以及版本控制系统,Github目前拥有140 ...

  2. java 24 - 9 GUI 之 给窗体换图标、设置启动在屏幕中间、更换皮肤

    A.首先更改窗体左上角的图片 步骤一: 创建3个包,分别建立1个类 第一个是窗体的包,窗体类:设置窗体的主要布置和功能 第二个是资源包,图片:把想要改的图案拉进来 第三个是UI界面包,UI界面设计类: ...

  3. git push时错误提示的解决办法 By default, updating the current branch in a non-bare repository error: is denied,

    在使用git将客户端的修改push到服务器上的时候,出现无法push,提示和stackoverflow上的http://stackoverflow.com/questions/2816369/git- ...

  4. ie6-ie8中不支持opacity透明度的解决方法

    ie6-ie8中是不支持的,需要加上下面这句话:filter: alpha(opacity=70);此外这种效果不能用ietester中的ie6测试,因为ietester的ie6这样写也是不透明的,但 ...

  5. linux 防火墙开启80端口永久保存

    经常使用CentOS的朋友,可能会遇到和我一样的问题.开启了防火墙导致80端口无法访问,刚开始学习centos的朋友可以参考下.经常使用CentOS的朋友,可能会遇到和我一样的问题.最近在Linux ...

  6. js读取解析JSON类型数据(转)

    谢谢博主,转自http://blog.csdn.net/beyond0851/article/details/9285771 一.什么是JSON? JSON(JavaScript Object Not ...

  7. 2055 [ZJOI2009]假期的宿舍

    P2055 [ZJOI2009]假期的宿舍 题目描述 学校放假了 · · · · · · 有些同学回家了,而有些同学则有以前的好朋友来探访,那么住宿就是一个问题.比如 A 和 B 都是学校的学生,A ...

  8. C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 导入导出Microsoft Excel 2010的例子

    1:能支持多种Excel版本,早期的.现在的版本都支持.2:能导入.3:能导出.4:有简单的例子可以参考.

  9. C语言 自动修改文件名小程序

    #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <stri ...

  10. scala 学习笔记(03) 参数缺省值、不定个数参数、类的属性(Property)、泛型初步

    继续学习,这一篇主要是通过scala来吐槽java的,同样是jvm上的语言,差距咋就这么大呢? 作为一个有.NET开发经验的程序员,当初刚接触java时,相信很多人对java语言有以下不爽(只列了极小 ...