Kernel Methods (3) Kernel Linear Regression
Linear Regression
线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为:
- 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中:
- \(x_i\)是\(n\)维列向量
- \(y_i\)的值服从正态分布\(N(f(x_i), \sigma_i^2)\), \(f(x_i)\)是关于\(x_i\)的线性函数: \(f(x_i) = w^Tx_i + b\).
为方便起见, 令\(x_i \gets [x_{i0} = 1, x_{i1}, \dots, x_{in}] = [1, x_i^T]^T, w \gets [b, w^T]^T\), \(\therefore f(x_i) = w^Tx_i\), 以期望值作为预测值, 即\(y_i = f(x_i)\)
- 对于测试样本\(x\), 预测\(x\)对应的\(y=f(x)\).
问题对应的损失函数:
\[
L(w) = \sum_{i =1}^m (f(x_i) - y_i)^2 = \sum_{i =1}^m (w^Tx_i - y_i)^2 = ||Xw - Y||^2
\]
其中,
\[
X =
\left[
\begin{matrix}
x_1^T \\ x_2^T \\ \vdots \\ x_m^T
\end{matrix}
\right],
Y = [y_1, \dots, y_m]^T
\]
加上正则项后,
\[
L(w) = ||Xw - Y||^2 + \lambda w^Tw = (Xw - Y)^T(Xw - Y) + \lambda w^Tw, (\lambda > 0)
\]
则
\[
w = argmin L(w)
\]
要使\(L(w)\)取最得小值,
\[
\to \frac {\partial L}{\partial w} = 2X^T(Xw -Y) + 2\lambda w = 0
\]
\[
\to X^TXw + \lambda w =(X^TX + \lambda I) w = X^TY
\]
(\(I\)是一个\(n\)维的单位矩阵)
\[
\to w = (X^TX + \lambda I)^{-1} X^TY
\]
(因为有\(\lambda I\)在, 所以\(X^TX + \lambda I\)一定是可逆的.)
Kernel-based Linear Regression:Theory
不带kernel的线性回归算法得到的模型是一个线性函数 \(f(x) = w^Tx\). 要将它变成非线性的, 一个很常见的做法是手动构造新的多项式特征, 例如: \((a, b) \to (a^2, ab, b^2)\). 这个做法从本质上来说就是一种kernel方法, 只不过因为是手动构造的feature space, 它的feature mapping function \(\Phi\) 是已知了. 当原始输入空间的维度不高时, 这种手动方式当然是一个不错的选择, 但是当维度变高后, 例如100维, 代价就太高了.
使用kernel之后, 上面的损失函数变为:
\[
L(w) = ||Zw - Y||^2 + \lambda w^Tw = (Zw - Y)^T(Zw - Y) + \lambda w^Tw
\]
其中,
\[
Z =
\left[
\begin{matrix}
\Phi(x_1)^T \\ \Phi(x_2)^T \\ \vdots \\ \Phi(x_m)^T
\end{matrix}
\right]
\]
最后得到的\(w\)也相应的变为:
\[
w = (Z^TZ + \lambda I)^{-1} Z^TY
\]
之前已经反复讲过, 使用kernel method \(\kappa\)时, 它对应的\(\Phi\)是未知的. 对kernel linear regression也是如此. 所以现在得到的\(w\)是没法直接用于预测新样本的.
但是当一个新样本\(x\)进来时, (\(x\)不包含1, 但是\(\Phi(x)\)已经像上面那样已经包含了增广项1, 所以式子仍然没有显式的出现\(b\))
\[
y = w^T\Phi(x) = Y^TZ(Z^TZ + \lambda I)^{-1}\Phi(x)
\]
利用等式\(Z(Z^TZ + \lambda I_{n\times n})^{-1} = (ZZ^T + \lambda I_{m\times m})^{-1}Z\),(这个等式通过左右同时乘以相同的矩阵很容易验证.)
\[
y =w^T\Phi(x) = Y^T (ZZ^T + \lambda I)^{-1})Z \Phi(x) = Y^T (K + \lambda I)^{-1} Z\Phi(x) = Y^T (K + \lambda I)^{-1}
\left[\begin{matrix}
\kappa(x_1, x)\\
\kappa(x_2, x)\\
\vdots\\
\kappa(x_m, x)
\end{matrix}\right]
\]
其中, \(K = ZZ^T\)是kernel matrix.
这样一来, 我们在\(\Phi(x)\)未知的情况下得到了测试样本\(x\)的预测值\(y\).
Kernel Methods (3) Kernel Linear Regression的更多相关文章
- Kernel Methods (5) Kernel PCA
先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...
- Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...
- Kernel Methods (4) Kernel SVM
(本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...
- Kernel Methods - An conclusion
Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...
- Kernel Methods (1) 从简单的例子开始
一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)
主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...
- Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...
- 核方法(Kernel Methods)
核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...
随机推荐
- Remote Displayer for Android V1.2
VERSION LOG for Android Remote Displayer Features:The app allows you to see your Android device remo ...
- NOIP2009靶形数独[DFS 优化]
描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z博士请教,Z 博士拿出了他最近发明的“靶形数独 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 学习ROS的基本知识,节点、话题、服务等
之前我在电脑上安装的ROS版本为jade版的. 可是后来发现各个教程安装的是indigo版的 于是我又去看了看ROS官网,在官网上有这样的一句话. 而且又因为indigo版的资料多一些,于是我就换了r ...
- code blocks 如何实现一键代码格式化
问题:code blocks 如何实现一键代码格式化 解答:直接右键,选择format use ASstyle
- js原生碰撞检测
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- Android fragment之间消息传递
1. 在Fragment里定义一个内部接口, 在Fragment初始化方法里, 把父Activity转换成这个接口, 赋值给成员变量 public class DummyFragment extend ...
- X200s,Debian 8(Jessie) 安装流水帐
1. U盘启动安装 a. 因为无线网卡驱动是non-free,需要另外下载,对应X200s,文件是iwlwifi-5000-5.ucode,下完放到安装U盘的根目录下,安装时就不会再提示而是直接安装 ...
- ListView实现原理
转载:http://blog.csdn.net/guolin_blog/article/details/44996879 在Android所有常用的原生控件当中,用法最复杂的应该就是ListView了 ...
- Html代码保存为Pdf文件
前段时间Insus.NET有实现了<上传Text文档并转换为PDF>http://www.cnblogs.com/insus/p/4313092.html 和<截取视图某一段另存为部 ...