Linear Regression

线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为:

  • 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中:

    • \(x_i\)是\(n\)维列向量
    • \(y_i\)的值服从正态分布\(N(f(x_i), \sigma_i^2)\), \(f(x_i)\)是关于\(x_i\)的线性函数: \(f(x_i) = w^Tx_i + b\).
      为方便起见, 令\(x_i \gets [x_{i0} = 1, x_{i1}, \dots, x_{in}] = [1, x_i^T]^T, w \gets [b, w^T]^T\), \(\therefore f(x_i) = w^Tx_i\), 以期望值作为预测值, 即\(y_i = f(x_i)\)
  • 对于测试样本\(x\), 预测\(x\)对应的\(y=f(x)\).

问题对应的损失函数:
\[
L(w) = \sum_{i =1}^m (f(x_i) - y_i)^2 = \sum_{i =1}^m (w^Tx_i - y_i)^2 = ||Xw - Y||^2
\]
其中,
\[
X =
\left[
\begin{matrix}
x_1^T \\ x_2^T \\ \vdots \\ x_m^T
\end{matrix}
\right],
Y = [y_1, \dots, y_m]^T
\]
加上正则项后,
\[
L(w) = ||Xw - Y||^2 + \lambda w^Tw = (Xw - Y)^T(Xw - Y) + \lambda w^Tw, (\lambda > 0)
\]

\[
w = argmin L(w)
\]
要使\(L(w)\)取最得小值,
\[
\to \frac {\partial L}{\partial w} = 2X^T(Xw -Y) + 2\lambda w = 0
\]
\[
\to X^TXw + \lambda w =(X^TX + \lambda I) w = X^TY
\]
(\(I\)是一个\(n\)维的单位矩阵)
\[
\to w = (X^TX + \lambda I)^{-1} X^TY
\]
(因为有\(\lambda I\)在, 所以\(X^TX + \lambda I\)一定是可逆的.)

Kernel-based Linear Regression:Theory

不带kernel的线性回归算法得到的模型是一个线性函数 \(f(x) = w^Tx\). 要将它变成非线性的, 一个很常见的做法是手动构造新的多项式特征, 例如: \((a, b) \to (a^2, ab, b^2)\). 这个做法从本质上来说就是一种kernel方法, 只不过因为是手动构造的feature space, 它的feature mapping function \(\Phi\) 是已知了. 当原始输入空间的维度不高时, 这种手动方式当然是一个不错的选择, 但是当维度变高后, 例如100维, 代价就太高了.
使用kernel之后, 上面的损失函数变为:
\[
L(w) = ||Zw - Y||^2 + \lambda w^Tw = (Zw - Y)^T(Zw - Y) + \lambda w^Tw
\]
其中,
\[
Z =
\left[
\begin{matrix}
\Phi(x_1)^T \\ \Phi(x_2)^T \\ \vdots \\ \Phi(x_m)^T
\end{matrix}
\right]
\]
最后得到的\(w\)也相应的变为:
\[
w = (Z^TZ + \lambda I)^{-1} Z^TY
\]
之前已经反复讲过, 使用kernel method \(\kappa\)时, 它对应的\(\Phi\)是未知的. 对kernel linear regression也是如此. 所以现在得到的\(w\)是没法直接用于预测新样本的.
但是当一个新样本\(x\)进来时, (\(x\)不包含1, 但是\(\Phi(x)\)已经像上面那样已经包含了增广项1, 所以式子仍然没有显式的出现\(b\))
\[
y = w^T\Phi(x) = Y^TZ(Z^TZ + \lambda I)^{-1}\Phi(x)
\]
利用等式\(Z(Z^TZ + \lambda I_{n\times n})^{-1} = (ZZ^T + \lambda I_{m\times m})^{-1}Z\),(这个等式通过左右同时乘以相同的矩阵很容易验证.)
\[
y =w^T\Phi(x) = Y^T (ZZ^T + \lambda I)^{-1})Z \Phi(x) = Y^T (K + \lambda I)^{-1} Z\Phi(x) = Y^T (K + \lambda I)^{-1}
\left[\begin{matrix}
\kappa(x_1, x)\\
\kappa(x_2, x)\\
\vdots\\
\kappa(x_m, x)
\end{matrix}\right]
\]
其中, \(K = ZZ^T\)是kernel matrix.
这样一来, 我们在\(\Phi(x)\)未知的情况下得到了测试样本\(x\)的预测值\(y\).

Kernel Methods (3) Kernel Linear Regression的更多相关文章

  1. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  2. Kernel Methods (2) Kernel function

    几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...

  3. Kernel Methods (4) Kernel SVM

    (本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...

  4. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  5. Kernel Methods (1) 从简单的例子开始

    一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...

  6. Kernel methods on spike train space for neuroscience: a tutorial

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...

  7. PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)

    主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...

  8. Linear Regression with machine learning methods

    Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...

  9. 核方法(Kernel Methods)

    核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...

随机推荐

  1. 分布式系统理论之Quorum机制

    一,Quorum机制介绍 在分布式系统中有个CAP理论,对于P(分区容忍性)而言,是实际存在 从而无法避免的.因为,分布系统中的处理不是在本机,而是网络中的许多机器相互通信,故网络分区.网络通信故障问 ...

  2. 第10章 同步设备I/O和异步设备I/O(2)_同步IO和异步IO基础

    10.3 执行同步设备I/O (1)对设备读写操作的函数 ①ReadFile/WriteFile函数 参数 描述 hFile 文件句柄 pvBuffer 指向要接收文件数据的缓冲区或把缓冲区数据写入设 ...

  3. AC日记——阶乘和 openjudge 1.6 15

    15:阶乘和 总时间限制:  1000ms 内存限制:  65536kB 描述 用高精度计算出S=1!+2!+3!+…+n!(n≤50) 其中“!”表示阶乘,例如:5!=5*4*3*2*1. 输入正整 ...

  4. AC日记——输出亲朋字符串 openjudge 1.7 05

    05:输出亲朋字符串 总时间限制:  1000ms 内存限制:  65536kB 描述 编写程序,求给定字符串s的亲朋字符串s1. 亲朋字符串s1定义如下:给定字符串s的第一个字符的ASCII值加第二 ...

  5. flex sdk中mx_internal function getTextField() 这种函数如何调用?

    在用flex 开发中,一些函数前打上了 mx_internal 外部调用不了,其实这样写就可以了 xxx.mx_internal::getTextField() 而 xxx.getTextField( ...

  6. jmeter 与 java http

    jmeter 如果对java代码进行测试 1.eclips中创建一个项目,且写一个待测试的简单java代码 2.将jmeter路径下 x:\xx\lxx\Dowxxxxxx\apache-jmeter ...

  7. poj[1185]炮兵阵地

    Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用&quo ...

  8. noj[1581] 筷子

    题目描述 A先生有很多双筷子.确切的说应该是很多根,因为筷子的长度不一,很难判断出哪两根是一双的.这天,A先生家里来了K个客人,A先生留下他们吃晚饭.加上A先生,A夫人和他们的孩子小A,共K+3个人. ...

  9. Java8 Lambda表达式和流操作如何让你的代码变慢5倍

    原文出处:ImportNew 有许许多多关于 Java 8 中流效率的讨论,但根据 Alex Zhitnitsky 的测试结果显示:坚持使用传统的 Java 编程风格——iterator 和 for- ...

  10. IE 和Firefox的js兼容性总结

    IE 和Firefox的js兼容性总结 12 August 2010 11:39 Thursday by 小屋 标签: 浏览器 方法 属性 IT 写法 一.函数和方法差异 1 . getYear()方 ...