Resource:《Introduction to Evolutionary Computing》


1. What is an evolutionary algorithm?

There are many different variants of evolutionary algorithms. The common underlying behind all these techniques is the same: given a population of individuals within some environment that has limited resources, competition for those resources causes natural selection (survival of the fittest)

2. Components of Evolutionary Algorithms

  • Representation (definition of individuals)
  • Evalution function (or fitness function)
  • Population
  • Parent selection mechanism
  • Variation operators, recombination and mutation
  • Survivor selection mechanism (replacement)
  • Initialisation procedure
  • Termination condition

The general scheme of an evolutionary algorithm as a flowchart:

  

The general scheme of an evolutionary algorithm in pseudocode:

  

3. Genetic Algorithms

3.1 Introduction

This is commonly referred as a means of generating new candidate solutions.

This has:

  • a binary representation
  • fitness proportionate selection
  • a low probability of mutation
  • an emphasis on genetically inspired recombination as a means of generating new candidate solutions.

An introductory example: f(x) = x^2

3.2 Representation of Individuals

  • binary representations
  • integer representations
  • real-valued or floating-point representation
  • permutation representation

3.3 Mutation

  • mutation for binary representations
  • mutation operators for integer representations
  • mutation operators for floating-point representations
  • mutation operators for permutation representations

3.4 Recombination

  • recombination operators for binary representations
  • recombination operators for integer representations
  • recombination operators for floating-point representations
  • recombination operators for permutation representations
  • multiparent recombination

3.5 Population models

  • generational model
  • steady-state model

generational model: In each generation we begin with a population of size μ, from which a mating pool of μ parents is selected. Next, λ (=μ) offspring are created from the mating pool by the application of variantion operators, and evaluated. After each generation, the whole population is replaced by its offspring, which is called the "next generation".

steady state model: The entire population is not changed at once, but rather a part of it. In this case, λ (<μ) old individuals are replaced by  λ new ones, the offspring. The percentage of the population that is replaced is called the generational gap, and is equal to  λ/μ. Usually,  λ = 1 and a corresponding generation gap of 1/μ.

3.6 Parent Selection

  • fitness proportional selection
  • ranking selection
  • implementing selection probabilities
  • tournament selection

3.7 Survivor Selection

The survivor selection mechanism is responsible for managing the process whereby the working memory of the GA is reduced from a set of μ parents and  λ offspring to produce the set of μ individuals for the next generation.

This step in the main evolutionary cycle is also called replacement.

age-based replacement

fitness-based replacement

Evolutionary Computing: 4. Review的更多相关文章

  1. Evolutionary Computing: 5. Evolutionary Strategies(2)

    Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...

  2. Evolutionary Computing: 5. Evolutionary Strategies(1)

    resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...

  3. Evolutionary Computing: 1. Introduction

    Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...

  4. Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System

    resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...

  5. Evolutionary Computing: Assignments

    Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...

  6. Evolutionary Computing: multi-objective optimisation

    1. What is multi-objective optimisation [wikipedia]: Multi-objective optimization (also known as mul ...

  7. Evolutionary Computing: 3. Genetic Algorithm(2)

    承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...

  8. Evolutionary Computing: 2. Genetic Algorithm(1)

    本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...

  9. [Z] 计算机类会议期刊根据引用数排名

    一位cornell的教授做的计算机类期刊会议依据Microsoft Research引用数的排名 link:http://www.cs.cornell.edu/andru/csconf.html Th ...

随机推荐

  1. CentOS6.0(64位)安装Apache+PHP+Mysql教程,安装Magento(解决DOM,Mcrypt,GD问题)完整教程

    CentOS6.0(64位)安装Apache+PHP+Mysql教程,安装Magento(解决DOM,Mcrypt,GD问题)完整教程 0   Posted by :小黑 On : 2012 年 9 ...

  2. JMeter学习-019-JMeter 监听器之【聚合报告】界面字段解析及计算方法概要说明

    聚合报告是 JMeter 使用过程中使用率非常高的监听器之一,可通过右键单击,依次选择[添加 / 监听器 / 聚合报告] 来进行添加.执行 JMeter 脚本后,聚合报告显示如下:

  3. ng-bind-html 的原素没有高度

    angularjs里绑定html元素,在页面的div里使用ng-bind-html <!-- html--> <div class="info" ng-bind- ...

  4. MySQL主键删除/添加

    2修改数据库和表的字符集alter database maildb default character set utf8;//修改数据库的字符集alter table mailtable defaul ...

  5. Nginx配置SSI

    一.什么是SSISSI:Server Side Include,是一种基于服务端的网页制作技术,大多数(尤其是基于Unix平台)的web服务器如Netscape Enterprise Server等均 ...

  6. lighttpd与fastcgi+cgilua原理、代码分析与安装

    原理 http://www.cnblogs.com/skynet/p/4173450.html 快速通用网关接口(Fast Common Gateway Interface/FastCGI)是通用网关 ...

  7. mysqldump database table

    一)在同一个数据库服务器上面进行数据表间的数据导入导出: 1. 如果表tb1和tb2的结构是完全一样的,则使用以下的命令就可以将表tb1中的数据导入到表tb2中: insert into db2.tb ...

  8. Java Map 集合类简介

      作者:Jack Shirazi 了解最常用的集合类型之一 Map 的基础知识以及如何针对您应用程序特有的数据优化 Map. 本文相关下载: · Jack 的 HashMap 测试 · Oracle ...

  9. URL中文乱码处理总结(转)

    转自:http://www.cnblogs.com/xirongliu/archive/2012/09/06/2674196.html 问题:传递中文参数的时候,接收页面出现乱码问题?当跨域操作,两套 ...

  10. Qt之重写QLabel类

    在mylabel.h 文件中#ifndef MYLABEL_H#define MYLABEL_H #include <QLabel>/*重新实现QLabel类,使其支持点击事件*/clas ...