加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。
Summary
- Zeros and Ones: Sum of a sample with replacement
$S$ is the number of successes: $n$ independent trials, chance of success on a single trial is $p$ $$E(S)=n\cdot p,\ SE(S)=\sqrt{n\cdot p\cdot(1-p)}$$ Binomial formula: $$P(S=k)=C_{n}^{k}\cdot p^{k}\cdot(1-p)^{n-k}$$ where $k=0, 1, 2, \ldots, n$. R code:dbinom(x = k, size = n, prob = p)
- Zeros and Ones: Sum of a sample without replacement
$S$ is the number of good elements in a simple random sample: $n$ elements drawn from $N=G+B$ elements of which $G$ are good. $$E(S)=n\cdot\frac{G}{N},\ SE(S)=\sqrt{n\cdot\frac{G}{N}\cdot\frac{B}{N}}\cdot\sqrt{\frac{N-n}{N-1}}$$ Hypergeometric formula: $$P(S=g)=\frac{C_{G}^{g}\cdot C_{B}^{n-g}}{C_{N}^{n}}$$ where $g$ is the number of good elements in the sample. R code:dhyper(k = n, m = G, n = B, x = g)
- Zeros and Ones: Sample proportion of ones
$n$ is the sample size, $X$ is the sample proportion of ones. Binomial setting: $$E(X)=p,\ SE(X)=\sqrt{\frac{p\cdot(1-p)}{n}}$$ Hypergeometric setting: $$E(X)=\frac{G}{N},\ SE(X)=\sqrt{\frac{\frac{G}{N}\cdot\frac{B}{N}}{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ - Sample sum
Population mean is $\mu$, $SD$ is $\sigma$, sample size is $n$, sample sum is $S$, and population size is $N$. With replacement: $$E(S)=n\cdot\mu,\ SE(S)=\sqrt{n}\cdot\sigma$$ Without replacement: $$E(S)=n\cdot\mu,\ SE(S)=\sqrt{n}\cdot\sigma\cdot\sqrt{\frac{N-n}{N-1}}$$ - Sample mean
Population mean is $\mu$, $SD$ is $\sigma$, sample size is $n$, sample mean is $M$, and population size is $N$. With replacement: $$E(M)=\mu,\ SE(M)=\frac{\sigma}{\sqrt{n}}$$ Without replacement: $$E(M)=\mu,\ SE(M)=\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ - Square Root Law
If you multiple the sample size by a factor, the accuracy goes up by the square root of the factor.
PRACTICE
PROBLEM 1
Find the expected value and standard error of
a) your average net gain per bet, if you bet \$1 independently 200 times on “red” at roulette (the bet pays 1 to 1 and the chance of winning is 18/38)
b) the proportion of times you win, if you bet 200 times independently on red as above
c) the total income of a simple random sample of 100 people taken from a population of 5000 people whose average income is \$50,000 with an SD of \$30,000
d) the average income of the sampled people in (c)
e) the number of black cards in a bridge hand (13 cards dealt at random without replacement from a deck consisting of 26 black cards and 26 red cards)
f) the percent of black cards in a bridge hand, described in (e)
Solution
a) Sample mean with replacement. $$E(\text{average net gain})=\mu=1\times\frac{18}{38}+(-1)\times\frac{20}{38}=-\frac{1}{19}\doteq0.05263158$$ $$SE(\text{average net gain})=\frac{SD}{\sqrt{n}}=\frac{\sqrt{E((x-\mu)^2)}}{\sqrt{n}}$$ $$=\frac{\sqrt{(1+\frac{1}{19})\times\frac{18}{38}+(-1+\frac{1}{19})\times\frac{20}{38}}}{\sqrt{200}}\doteq0.07061267$$
b) Sample proportion of ones binomial setting. $$E(\text{proportion of winning times})=p=\frac{18}{38}\doteq0.4736842$$ $$SE(\text{proportion of winning times})=\sqrt{\frac{p\cdot(1-p)}{n}}$$ $$=\sqrt{\frac{\frac{18}{38}\times(1-\frac{18}{38})}{200}}\doteq0.03530634$$
c) Sample sum without replacement. $$E(\text{total income})=n\cdot\mu=100\times50000=5000000$$ $$SE(\text{total income})=\sqrt{n}\cdot\sigma\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{100}\times30000\times\sqrt{\frac{5000-100}{5000-1}}\doteq 297014.6$$
d) Sample mean without replacement. $$E(\text{average income})=\mu=500000$$ $$SE(\text{average income})=\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\frac{30000}{\sqrt{100}}\times\sqrt{\frac{5000-100}{5000-1}}\doteq2970.146$$
e) Sum of a sample without replacement. $$E(\text{black cards in a bridge hand})=n\cdot p=13\times\frac{26}{52}=6.5$$ $$SE(\text{black cards in a bridge hand})=\sqrt{n\cdot p\cdot(1-p)}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{13\times\frac{1}{2}\times\frac{1}{2}}\times\sqrt{\frac{52-13}{52-1}}\doteq1.576482$$
f) Sample proportion of ones hypergeometric setting. $$E(\text{proportion of black cards in a bridge hand})=p=\frac{1}{2}$$ $$SE(\text{proportion of black cards in a bridge hand})=\sqrt{\frac{p\cdot(1-p)}{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{\frac{\frac{1}{2}\times(1-\frac{1}{2})}{13}}\times\sqrt{\frac{52-13}{52-1}}\doteq0.1212678$$
PROBLEM 2
I play a gambling game repeatedly; the games are independent of each other. In 100 games, my expected average net gain per game is -10 cents, with an SE of 5 cents. In 1000 games, my expected average net gain per game is ________ cents, with an SE of ________ cents.
Solution
The expected value of the net gain will not be changed by increasing the number of playing times. Thus $$E(\text{1000 games})=\mu=-10$$ For $SE$, it will go down when the number of playing games goes up ("square root law"). Thus $$SE(\text{1000 games})=\frac{\sigma}{\sqrt{1000}}=\frac{SE(\text{100 games})\cdot\sqrt{100}}{\sqrt{1000}}\doteq1.581139$$
PROBLEM 3
In a population of tens of thousands of voters, 48% are Democrats. A simple random sample of 125 voters is taken. Approximately what is the chance that a majority of the sampled voters are Democrats?
Solution
Using binomial distribution $n=125, k=63:125, p=0.48$: $$P(\text{majority of 125 sampled voters are Democrats})$$ $$=\sum_{k=63}^{125}C_{125}^{k}\cdot 0.48^k\cdot0.52^{125-k}\doteq0.3269725$$ R code:
sum(dbinom(63:125, 125, 0.48))
[1] 0.3269725
Alternatively, using nomal approximation (sample proportion of ones): $$p=0.48, \sigma=\sqrt{p\cdot(1-p)}$$ $$SE=\frac{\sigma}{\sqrt{125}}, Z=\frac{0.5-p}{SE}$$ Calculating by R:
p = 0.48; sigma = sqrt(p * (1 - p)); se = sigma / sqrt(125)
z = (0.5 - p) / se
1 - pnorm(z)
[1] 0.3272311
The two results are very closer, which is roughly $32.7\%$.
PROBLEM 4
Suppose you are trying to estimate the percent of Democrat voters. Other things being equal, is a simple random sample of 200 voters taken from 100,000 voters about as accurate as a simple random sample of 200 voters taken from 200,000 voters?
Solution
Sample proportion of ones. $$SE(\text{100000 voters})=\frac{\sigma}{\sqrt{200}}\cdot\sqrt{\frac{100000-200}{100000-1}}=0.9990045\cdot\frac{\sigma}{\sqrt{200}}$$ $$SE(\text{200000 voters})=\frac{\sigma}{\sqrt{200}}\cdot\sqrt{\frac{200000-200}{200000-1}}=0.9995024\cdot\frac{\sigma}{\sqrt{200}}$$ Both of the correction factors are very close to 1, thus the accuracy are the same.
UNGRADED EXERCISE SET C
PROBLEM 1
A coin is tossed 2500 times. There is about a 68% chance that the percent of heads is in the range 50% plus or minus? (a percentage)
Solution
$68\%$ is the area between -1 and 1 standard units. So it is $1SE$: $$p=0.5, n=2500$$ $$SE=\sqrt{\frac{p\cdot(1-p)}{n}}=\sqrt{\frac{0.5\times0.5}{2500}}=0.01$$ Thus, there is about $68\%$ chance that the percentage of heads is in the range $50\%$ plus or minus $1\%$.
PROBLEM 2
A simple random sample of 50 students is taken from a class of 300 students. In the class, * the average midterm score is 67 and the $SD$ is 12 * there are 72 women Let $W$ be the number of women in the sample, and let $S$ be the average midterm score of the sampled students.
2A Find $E(W)$.
2B Find $SE(W)$.
2C Find $E(S)$.
2D Find $SE(S)$.
Solution
2A) $$E(W)=50\times\frac{72}{300}=12$$
2B) Sample without replacement. $$N=300, n=50, p=\frac{72}{300}$$ $$SE(W)=\sqrt{n\cdot p\cdot(1-p)}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{50\times0.24\times0.76}\times\sqrt{\frac{300-50}{300-1}}\doteq2.761416$$
2C) $$E(S)=\mu=67$$
2D) Sample mean without replacement. $$\sigma=12, n=50, N=300$$ $$SE(S)=\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\frac{12}{\sqrt{50}}\times\sqrt{\frac{300-50}{300-1}}\doteq1.551782$$
PROBLEM 3
In a city of over 1,000,000 residents, 14% of the residents are senior citizens. In a simple random sample of 1200 residents, there is about a 95% chance that the percent of senior citizens is in the interval [pick the best option; even if you can provide a sharper answer than you see among the choices, please just pick the best among the options] $9\%-19\%$; $10\%-18\%$; $11\%-17\%$; $12\%-16\%$; $13\%-15\%$.
Solution
Firstly, $95\%$ is $2SE$. This is to find sample proportion (using binomial setting since its correction factor is very close to 1): $$E=p=0.14, n=1200$$ $$SE=\frac{p\cdot(1-p)}{\sqrt{n}}=\frac{0.14\times0.86}{\sqrt{1200}}\doteq0.01001665$$ Thus, the interval should be $E\pm2SE=0.14\pm0.02\in[12\%, 16\%]$.
PROBLEM 4
City A has 1,000,000 people; City B has 4,000,000 people. Suppose the goal is to try to predict the percent of Purple Party voters in a sample. Other things being equal, a simple random sample of 1% of the people in City A has about the same accuracy as a simple random sample of ________% of the people in City B. Pick the best option below to fill in the blank.
Solution
For the same accuracy, we need to make the same sample size (not the same proportion!). Thus the percentage of City B should be $$\frac{10^6\times1\%}{4\times10^6}=0.25\%$$
加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
随机推荐
- 树莓派Odroid等卡片式电脑上搭建NAS教程系列5-Samba服务器安装
本文章首发于浩瀚先森博客,地址: http://www.guohao1206.com/2016/08/23/967.html samba时一款为了实现linux系统中的文件能在windows系统中正常 ...
- Eclipse调试常用技巧(转)
Eclipse调试常用技巧 转自http://daimojingdeyu.iteye.com/blog/633824 1. 条件断点 断点大家都比较熟悉,在Eclipse Java 编辑区的行头双击就 ...
- PhoneGap: Android 自定义组件
Hello Core Demo Plugin Development(组件部署): http://docs.phonegap.com/en/2.0.0/guide_plugin-development ...
- java动态代理浅析
最近在公司看到了mybatis与spring整合中MapperScannerConfigurer的使用,该类通过反向代理自动生成基于接口的动态代理类. 于是想起了java的动态代理,然后就有了这篇文章 ...
- MVC+EF 理解和实现仓储模式和工作单元模式
MVC+EF 理解和实现仓储模式和工作单元模式 原文:Understanding Repository and Unit of Work Pattern and Implementing Generi ...
- Linux进程间通信之管道
1,进程间通信 (IPC ) Inter-Process Communication 比较好理解概念的就是进程间通信就是在不同进程之间传播或交换信息. 2,linux下IPC机制的分类:管道.信号.共 ...
- ASP.NET Web API(三):安全验证之使用摘要认证(digest authentication)
在前一篇文章中,主要讨论了使用HTTP基本认证的方法,因为HTTP基本认证的方式决定了它在安全性方面存在很大的问题,所以接下来看看另一种验证的方式:digest authentication,即摘要认 ...
- Who Says What to Whom on Twitter-www2011-20160512
分析性论文 what: who? 本文将Twitter中的用户分为了两大类--普通用户和精英用户,精英用户又被分为四类,分别为媒体(media).名人(celebrities).博主(bloggers ...
- Ubuntu's Trash
1.Location Where is Trash? /home/userName/.local/share/Trash2.Under Trash Three files: ...
- Android复习笔记--架构与版本
#Android架构: 1. Linux 内核层 Android 系统是基于Linux 2.6 内核的,这一层为Android 设备的各种硬件提供了底 层的驱动,如显示驱动.音频驱动.照相机驱动.蓝牙 ...