Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。

PDF笔记下载(Academia.edu)

Summary

  • Zeros and Ones: Sum of a sample with replacement
    $S$ is the number of successes: $n$ independent trials, chance of success on a single trial is $p$ $$E(S)=n\cdot p,\ SE(S)=\sqrt{n\cdot p\cdot(1-p)}$$ Binomial formula: $$P(S=k)=C_{n}^{k}\cdot p^{k}\cdot(1-p)^{n-k}$$ where $k=0, 1, 2, \ldots, n$. R code:

    dbinom(x = k, size = n, prob = p)
  • Zeros and Ones: Sum of a sample without replacement
    $S$ is the number of good elements in a simple random sample: $n$ elements drawn from $N=G+B$ elements of which $G$ are good. $$E(S)=n\cdot\frac{G}{N},\ SE(S)=\sqrt{n\cdot\frac{G}{N}\cdot\frac{B}{N}}\cdot\sqrt{\frac{N-n}{N-1}}$$ Hypergeometric formula: $$P(S=g)=\frac{C_{G}^{g}\cdot C_{B}^{n-g}}{C_{N}^{n}}$$ where $g$ is the number of good elements in the sample. R code:
    dhyper(k = n, m = G, n = B, x = g)
  • Zeros and Ones: Sample proportion of ones
    $n$ is the sample size, $X$ is the sample proportion of ones. Binomial setting: $$E(X)=p,\ SE(X)=\sqrt{\frac{p\cdot(1-p)}{n}}$$ Hypergeometric setting: $$E(X)=\frac{G}{N},\ SE(X)=\sqrt{\frac{\frac{G}{N}\cdot\frac{B}{N}}{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$
  • Sample sum
    Population mean is $\mu$, $SD$ is $\sigma$, sample size is $n$, sample sum is $S$, and population size is $N$. With replacement: $$E(S)=n\cdot\mu,\ SE(S)=\sqrt{n}\cdot\sigma$$ Without replacement: $$E(S)=n\cdot\mu,\ SE(S)=\sqrt{n}\cdot\sigma\cdot\sqrt{\frac{N-n}{N-1}}$$
  • Sample mean
    Population mean is $\mu$, $SD$ is $\sigma$, sample size is $n$, sample mean is $M$, and population size is $N$. With replacement: $$E(M)=\mu,\ SE(M)=\frac{\sigma}{\sqrt{n}}$$ Without replacement: $$E(M)=\mu,\ SE(M)=\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$
  • Square Root Law
    If you multiple the sample size by a factor, the accuracy goes up by the square root of the factor.

PRACTICE

PROBLEM 1

Find the expected value and standard error of

a) your average net gain per bet, if you bet \$1 independently 200 times on “red” at roulette (the bet pays 1 to 1 and the chance of winning is 18/38)

b) the proportion of times you win, if you bet 200 times independently on red as above

c) the total income of a simple random sample of 100 people taken from a population of 5000 people whose average income is \$50,000 with an SD of \$30,000

d) the average income of the sampled people in (c)

e) the number of black cards in a bridge hand (13 cards dealt at random without replacement from a deck consisting of 26 black cards and 26 red cards)

f) the percent of black cards in a bridge hand, described in (e)

Solution

a) Sample mean with replacement. $$E(\text{average net gain})=\mu=1\times\frac{18}{38}+(-1)\times\frac{20}{38}=-\frac{1}{19}\doteq0.05263158$$ $$SE(\text{average net gain})=\frac{SD}{\sqrt{n}}=\frac{\sqrt{E((x-\mu)^2)}}{\sqrt{n}}$$ $$=\frac{\sqrt{(1+\frac{1}{19})\times\frac{18}{38}+(-1+\frac{1}{19})\times\frac{20}{38}}}{\sqrt{200}}\doteq0.07061267$$

b) Sample proportion of ones binomial setting. $$E(\text{proportion of winning times})=p=\frac{18}{38}\doteq0.4736842$$ $$SE(\text{proportion of winning times})=\sqrt{\frac{p\cdot(1-p)}{n}}$$ $$=\sqrt{\frac{\frac{18}{38}\times(1-\frac{18}{38})}{200}}\doteq0.03530634$$

c) Sample sum without replacement. $$E(\text{total income})=n\cdot\mu=100\times50000=5000000$$ $$SE(\text{total income})=\sqrt{n}\cdot\sigma\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{100}\times30000\times\sqrt{\frac{5000-100}{5000-1}}\doteq 297014.6$$

d) Sample mean without replacement. $$E(\text{average income})=\mu=500000$$ $$SE(\text{average income})=\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\frac{30000}{\sqrt{100}}\times\sqrt{\frac{5000-100}{5000-1}}\doteq2970.146$$

e) Sum of a sample without replacement. $$E(\text{black cards in a bridge hand})=n\cdot p=13\times\frac{26}{52}=6.5$$ $$SE(\text{black cards in a bridge hand})=\sqrt{n\cdot p\cdot(1-p)}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{13\times\frac{1}{2}\times\frac{1}{2}}\times\sqrt{\frac{52-13}{52-1}}\doteq1.576482$$

f) Sample proportion of ones hypergeometric setting. $$E(\text{proportion of black cards in a bridge hand})=p=\frac{1}{2}$$ $$SE(\text{proportion of black cards in a bridge hand})=\sqrt{\frac{p\cdot(1-p)}{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{\frac{\frac{1}{2}\times(1-\frac{1}{2})}{13}}\times\sqrt{\frac{52-13}{52-1}}\doteq0.1212678$$

PROBLEM 2

I play a gambling game repeatedly; the games are independent of each other. In 100 games, my expected average net gain per game is -10 cents, with an SE of 5 cents. In 1000 games, my expected average net gain per game is ________ cents, with an SE of ________ cents.

Solution

The expected value of the net gain will not be changed by increasing the number of playing times. Thus $$E(\text{1000 games})=\mu=-10$$ For $SE$, it will go down when the number of playing games goes up ("square root law"). Thus $$SE(\text{1000 games})=\frac{\sigma}{\sqrt{1000}}=\frac{SE(\text{100 games})\cdot\sqrt{100}}{\sqrt{1000}}\doteq1.581139$$

PROBLEM 3

In a population of tens of thousands of voters, 48% are Democrats. A simple random sample of 125 voters is taken. Approximately what is the chance that a majority of the sampled voters are Democrats?

Solution

Using binomial distribution $n=125, k=63:125, p=0.48$: $$P(\text{majority of 125 sampled voters are Democrats})$$ $$=\sum_{k=63}^{125}C_{125}^{k}\cdot 0.48^k\cdot0.52^{125-k}\doteq0.3269725$$ R code:

sum(dbinom(63:125, 125, 0.48))
[1] 0.3269725

Alternatively, using nomal approximation (sample proportion of ones): $$p=0.48, \sigma=\sqrt{p\cdot(1-p)}$$ $$SE=\frac{\sigma}{\sqrt{125}}, Z=\frac{0.5-p}{SE}$$ Calculating by R:

p = 0.48; sigma = sqrt(p * (1 - p)); se = sigma / sqrt(125)
z = (0.5 - p) / se
1 - pnorm(z)
[1] 0.3272311

The two results are very closer, which is roughly $32.7\%$.

PROBLEM 4

Suppose you are trying to estimate the percent of Democrat voters. Other things being equal, is a simple random sample of 200 voters taken from 100,000 voters about as accurate as a simple random sample of 200 voters taken from 200,000 voters?

Solution

Sample proportion of ones. $$SE(\text{100000 voters})=\frac{\sigma}{\sqrt{200}}\cdot\sqrt{\frac{100000-200}{100000-1}}=0.9990045\cdot\frac{\sigma}{\sqrt{200}}$$ $$SE(\text{200000 voters})=\frac{\sigma}{\sqrt{200}}\cdot\sqrt{\frac{200000-200}{200000-1}}=0.9995024\cdot\frac{\sigma}{\sqrt{200}}$$ Both of the correction factors are very close to 1, thus the accuracy are the same.

UNGRADED EXERCISE SET C

PROBLEM 1

A coin is tossed 2500 times. There is about a 68% chance that the percent of heads is in the range 50% plus or minus? (a percentage)

Solution

$68\%$ is the area between -1 and 1 standard units. So it is $1SE$: $$p=0.5, n=2500$$ $$SE=\sqrt{\frac{p\cdot(1-p)}{n}}=\sqrt{\frac{0.5\times0.5}{2500}}=0.01$$ Thus, there is about $68\%$ chance that the percentage of heads is in the range $50\%$ plus or minus $1\%$.

PROBLEM 2

A simple random sample of 50 students is taken from a class of 300 students. In the class, * the average midterm score is 67 and the $SD$ is 12 * there are 72 women Let $W$ be the number of women in the sample, and let $S$ be the average midterm score of the sampled students.

2A Find $E(W)$.

2B Find $SE(W)$.

2C Find $E(S)$.

2D Find $SE(S)$.

Solution

2A) $$E(W)=50\times\frac{72}{300}=12$$

2B) Sample without replacement. $$N=300, n=50, p=\frac{72}{300}$$ $$SE(W)=\sqrt{n\cdot p\cdot(1-p)}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\sqrt{50\times0.24\times0.76}\times\sqrt{\frac{300-50}{300-1}}\doteq2.761416$$

2C) $$E(S)=\mu=67$$

2D) Sample mean without replacement. $$\sigma=12, n=50, N=300$$ $$SE(S)=\frac{\sigma}{\sqrt{n}}\cdot\sqrt{\frac{N-n}{N-1}}$$ $$=\frac{12}{\sqrt{50}}\times\sqrt{\frac{300-50}{300-1}}\doteq1.551782$$

PROBLEM 3

In a city of over 1,000,000 residents, 14% of the residents are senior citizens. In a simple random sample of 1200 residents, there is about a 95% chance that the percent of senior citizens is in the interval [pick the best option; even if you can provide a sharper answer than you see among the choices, please just pick the best among the options] $9\%-19\%$; $10\%-18\%$; $11\%-17\%$; $12\%-16\%$; $13\%-15\%$.

Solution

Firstly, $95\%$ is $2SE$. This is to find sample proportion (using binomial setting since its correction factor is very close to 1): $$E=p=0.14, n=1200$$ $$SE=\frac{p\cdot(1-p)}{\sqrt{n}}=\frac{0.14\times0.86}{\sqrt{1200}}\doteq0.01001665$$ Thus, the interval should be $E\pm2SE=0.14\pm0.02\in[12\%, 16\%]$.

PROBLEM 4

City A has 1,000,000 people; City B has 4,000,000 people. Suppose the goal is to try to predict the percent of Purple Party voters in a sample. Other things being equal, a simple random sample of 1% of the people in City A has about the same accuracy as a simple random sample of ________% of the people in City B. Pick the best option below to fill in the blank.

Solution

For the same accuracy, we need to make the same sample size (not the same proportion!). Thus the percentage of City B should be $$\frac{10^6\times1\%}{4\times10^6}=0.25\%$$

加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples的更多相关文章

  1. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  2. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  3. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  4. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  5. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  6. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  7. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  8. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  9. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

随机推荐

  1. JavaScript中的类型转换(二)

    说明: 本篇主要讨论JavaScript中各运算符对运算数进行的类型转换的影响,本文中所提到的对象类型仅指JavaScript预定义的类型和程序员自己实现的对象,不包括宿主环境定义的特殊对象(比如浏览 ...

  2. 单从Advice(通知)实现AOP

    如果你在实际开发中没感觉到OOP的一些缺陷,就不要往下看了! 如果你不了解AOP,或类似AOP的思路,请先去了解一下AOP相关的认识. 如果你是概念党,或是经验党,或是从众党,也请不要看了! 我实现的 ...

  3. Android浮动小球与开机自启动

    看着手机上的360浮动小球,不评价其具体的功能与实用性,至少在UI设计与交互方面是个不小的创新. 如图片左上角所示,球中还会显示当前手机的运行状况,向下拉动还会有弹射来达到加速.清理等目的. 那好,先 ...

  4. md5加密篇(一)

    /// <summary> /// 获取文件的md5摘要 /// </summary> /// <param name="sFile">文件流& ...

  5. Docker部署SDN环境

    2014-12-03 by muzi Docker image = Java class Docker container = Java object 前言 5月份的时候,当我还是一个大学生的时候,有 ...

  6. [转]搞ACM的你伤不起(转自Roba大神)

    劳资六年前开始搞ACM啊!!!!!!!!!! 从此踏上了尼玛不归路啊!!!!!!!!!!!! 谁特么跟劳资讲算法是程序设计的核心啊!!!!!! 尼玛除了面试题就没见过用算法的地方啊!!!!!! 谁再跟 ...

  7. 东大OJ-1544: GG的战争法则

    题目描述 你在桥上看风景 看风景的人在楼上看你 明月装饰了你的窗子 你装饰了我的梦 这是GG在长坂坡发出的感叹. 三年前GG莫名的穿越到了三国时期,在这三年里他看尽了各种杀戮,心里早已麻木.GG他渴望 ...

  8. webpack 插件: html-webpack-plugin

    插件地址:https://www.npmjs.com/package/html-webpack-plugin 这个插件用来简化创建服务于 webpack bundle 的 HTML 文件,尤其是对于在 ...

  9. 十天冲刺---Day3

    站立式会议 站立式会议内容总结: git上Issues新增内容: 燃尽图 照片 组长情绪爆炸是很可怕的事情.这里自责一下. 进度缓慢是一件非常头疼的事情.还有每个人的时间都很紧张,除了学习,还有各种工 ...

  10. Ajax深入学习

    1.ajax如何减轻服务器的负担的? 2.如何合理的使用ajax? 3.一个页面一进来等文档加载完毕:走ajax请求去了?    用户体验真的好吗?