“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第10章课程讲义下载(PDF)

Summary

  • Definition
    If $[A]$ is a $n\times n$ matrix, then $[X]\neq \vec0$ is an eigenvector of $[A]$ if $$[A][X] = \lambda[X]$$ where $\lambda$ is a scalar and $[X]\neq0$.
    The scalar $\lambda$ is called the eigenvalue of $[A]$ and $[X]$ is called the eigenvector corresponding to the eigenvalue $\lambda$.
  • Finding eigenvalue and eigenvector
    • To find the eigenvalues of a $n\times n$ matrix $[A]$, we have $$AX=\lambda X$$ $$\Rightarrow AX-\lambda X=0$$ $$\Rightarrow (A-\lambda I)X=0$$ For the above set of equations to have a non-zero solution $$\det(A-\lambda I) = 0$$ The above equation is called the characteristic equation of $[A]$, which gives $$\lambda^n + c_1\lambda^{n-1} + \cdots + c_n=0$$ Hence this polynomial has $n$ roots.
    • For example, finding the eigenvalues of the matrix $$[A] = \begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix}$$ We have $$A-\lambda I = \begin{bmatrix}3 - \lambda & -1.5\\ -0.75& 0.75 - \lambda \end{bmatrix}$$ $$\det(A - \lambda I) = (3-\lambda)(0.75-\lambda) - (-0.75)(-1.5)$$ $$\Rightarrow \lambda^2-3.75\lambda + 1.125 =0$$ $$\Rightarrow \lambda = {3.75\pm\sqrt{{3.75}^{2} - 4.5}\over2} = 3.421165,\ 0.3288354$$ That is, the eigenvalues are 3.421165 and 0.3288354.
    • To find the eigenvectors of the above matrix $[A]$. Let $[X] = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}$ and we already have $\lambda_1 = 3.421165$ and $\lambda_2 = 0.3288354$.
      When $\lambda = 3.421165$, from the definition we have $$(A-\lambda I)X=0$$ $$\Rightarrow \left(\begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix} - \begin{bmatrix}3.421165& 0\\ 0& 3.421165 \end{bmatrix} \right) \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = 0$$ $$\Rightarrow \begin{bmatrix}-0.421165& -1.5\\ -0.75& -2.671165 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$ $$\Rightarrow -0.421165x_1 -1.5x_2 = 0 \Rightarrow x_2 = -0.2807767x_1$$ that is, $$[X] = \begin{bmatrix}x_1\\ -0.2807767x_1\end{bmatrix} = x_1\begin{bmatrix}1 \\ -0.2807767\end{bmatrix}$$ Hence the eigenvector corresponding to $\lambda_1 = 3.421165$ is $$\begin{bmatrix}1 \\ -0.2807767\end{bmatrix}$$ Similarly, we have calculate the eigenvector corresponding to $\lambda_2 = 0.3288354$: $$ \left(\begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix} - \begin{bmatrix}0.3288354& 0\\ 0& 0.3288354 \end{bmatrix} \right) \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = 0$$ $$\Rightarrow \begin{bmatrix}2.671165& -1.5\\ -0.75& 0.4211646 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$ $$\Rightarrow 2.671165x_1 -1.5x_2 = 0 \Rightarrow x_2 = 1.780776x_1$$ that is, $$[X] = \begin{bmatrix}x_1\\ 1.780776x_1\end{bmatrix} = x_1\begin{bmatrix}1 \\ 1.780776\end{bmatrix}$$ Hence the eigenvector corresponding to $\lambda_1 = 0.3288354$ is $$\begin{bmatrix}1 \\ 1.780776\end{bmatrix}$$
  • Some related theorems
    • If $[A]$ is a $n\times n$ triangular matrix - upper triangular, lower triangular and diagonal, the eigenvalues of $[A]$ are the diagonal entries of $[A]$.
    • $\lambda = 0$ is an eigenvalue of $[A]$ if $[A]$ is a singular (non-invertible) matrix.
    • $[A]$ and $[A]^{T}$ have the same eigenvalues.
    • Eigenvalues of a symmetric matrix are real.
    • Eigenvectors of a symmetric matrix are orthogonal, but only for distinct eigenvalues.
    • $|\det(A)|$ is the product of the absolute values of the eigenvalues of $[A]$.
  • Power Method
    • One of the most common methods used for finding eigenvalues and eigenvectors is the power method. It is used to find the largest eigenvalue in an absolute sense. Note that if this largest eigenvalues is repeated, this method will not work. Also this eigenvalue needs to be distinct.
    • The method is as follows:
      1. Assume a guess $X^{(0)}$ for the eigenvector in $$AX=\lambda X$$ equation. One of the entries of $X^{(0)}$ needs to be unity.
      2. Find $$Y^{(1)} = AX^{(0)}$$
      3. Scale $Y^{(1)}$ so that the chosen unity component remains unity. $$Y^{(1)} = \lambda^{(1)}X^{(1)}$$
      4. Repeat steps 2 and 3 with $X=X^{(1)}$ to get $X^{(2)}$.
      5. Repeat steps 2 and 3 until the value of the eigenvalue converges.
    • For example, using the power method, find the largest eigenvalue and the corresponding eigenvectors of $$[A] = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix}$$ given with the initial guess $\begin{bmatrix}1\\ 1\\ 1 \end{bmatrix}$.
      From the algorithm, we have $$AX^{(0)} = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix} \begin{bmatrix}1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix}2.5\\ -0.5\\ -0.5 \end{bmatrix}$$ $$\Rightarrow Y^{(1)} = 2.5\begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix} $$ so $\lambda^{(1)} = 2.5$ and $X^{(1)} = \begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix}$. Note that we choose the first element of $X^{(0)}$ to be unity. Then $$AX^{(1)} = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix} \begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix} = \begin{bmatrix}1.3\\ -0.5\\ -0.5 \end{bmatrix}$$ $$\Rightarrow Y^{(2)} = 1.3\begin{bmatrix}1\\ -0.3846\\ -0.3846 \end{bmatrix}$$ so $\lambda^{(2)} = 1.3$ and $X^{(2)} = \begin{bmatrix}1\\ -0.3846\\ -0.3846 \end{bmatrix}$.
      Thus far, the absolute relative approximate error in the eigenvalues is $$|\varepsilon| = \left|{\lambda^{(2)}-\lambda^{(1)}\over \lambda^{(2)}}\right| = \left|{1.3-2.5\over1.3}\right| = 0.9230769$$ Conducting further iterations, the eigenvalue after 5 iterations is 1.02459 and its absolute relative approximate error is 0.012441.
      The exact value of the eigenvalue is $\lambda = 1$ and the corresponding eigenvector is $$X=\begin{bmatrix}1\\-0.5\\-0.5 \end{bmatrix}$$
    • R code

      This function includes 4 parameters:

      • A is the target matrix;
      • x0 is the initial guess which is a vector;
      • eps is the tolerance of the error which can be modified;
      • maxit is the maximum number of iterations in the process.

      We can calculate the previous example by using this script:

      A = matrix(c(1.5, -0.5, -0.5, 0, 0.5, 0, 1, -0.5, 0), ncol = 3)
      PowerEigen(A, x0 = c(1, 1, 1))
      Converged after 23 iterations
      $value
      [1] 1
      $vector
      [,1]
      [1,] 1.0
      [2,] -0.5
      [3,] -0.5

Selected Problems

1. The eigenvalues $\lambda$ of matrix $[A]$ are found by solving the equation ( ).

Solution: $$|A-\lambda I| = 0$$

2. Find the eigenvalues and eigenvectors of $$[A] = \begin{bmatrix} 10& 9\\ 2& 3\end{bmatrix}$$ using the determinant method.

Solution: $$|A-\lambda I| = 0$$ $$\Rightarrow \det\left(\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix}\right) = 0$$ $$\Rightarrow (10-\lambda)(3-\lambda) - 18=0$$ $$\Rightarrow \lambda^2 - 13\lambda +12 =0$$ $$\Rightarrow \lambda_1=1,\ \lambda_2=12$$ For $\lambda_1=1$, we have $$\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix} 0\\ 0\end{bmatrix} $$ $$\Rightarrow \begin{bmatrix} 9 & 9\\ 2 & 2\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\Rightarrow x_2 =-x_1$$ $$\Rightarrow X=\begin{bmatrix}x_1\\ -x_1 \end{bmatrix} = x_1\begin{bmatrix} 1\\ -1\end{bmatrix}$$ Thus the eigenvector corresponding to $\lambda_1=1$ is $\begin{bmatrix} 1\\ -1\end{bmatrix}$. Similarly, we can find the second eigenvector corresponding to $\lambda_2=12$: $$\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix} 0\\ 0\end{bmatrix} $$ $$\Rightarrow \begin{bmatrix} -2 & 9\\ 2 & -9\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\Rightarrow -2x_1+9x_2 = 0 \Rightarrow x_2 = {2\over9}x_1$$ $$\Rightarrow X=\begin{bmatrix}x_1\\ {2\over9}x_1 \end{bmatrix} = x_1\begin{bmatrix} 1\\ {2\over9}\end{bmatrix} \Rightarrow \begin{bmatrix} 9\\ 2\end{bmatrix}$$ Thus the eigenvector corresponding to $\lambda_2=12$ is $\begin{bmatrix} 9\\ 2\end{bmatrix}$.

3. Find the eigenvalues and eigenvectors of $$[A] = \begin{bmatrix}4& 0& 1\\ -2& 0& 1\\ 2& 0& 1\end{bmatrix}$$ using the determinant method.

Solution:

First of all, we can read off that $\lambda = 0$ is an eigenvalue of this matrix since it is singular. Then from the definition we have $$|A-\lambda I| = 0$$ $$\Rightarrow \det\left( \begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix}\right) = 0$$ $$\Rightarrow (4-\lambda)\left[(-\lambda)(1-\lambda) - 0\right]+\left[1\cdot(0+2\lambda)\right] =0$$ $$\Rightarrow (4-\lambda)(\lambda^2-\lambda) +2\lambda= 0$$ $$\Rightarrow \lambda(-\lambda^2+5\lambda-4+2) =0$$ $$\Rightarrow \lambda(\lambda^2-5\lambda+2) =0$$ $$\Rightarrow \lambda_1=0,\ \lambda_2 = 4.561553,\ \lambda_3=0.4384472.$$ For $\lambda_1 =0$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 4 & 0 & 1\\ -2 & 0 & 1\\ 2 & 0& 1 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} 4& 0& 1\\ -2& 0& 1\\ 2& 0& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0& 0& 3\\ -2& 0& 1\\ 0& 0& 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0& 0& 0\\ -2& 0& 0\\ 0& 0& 2 \end{bmatrix}$$ that is, $x_1=x_3=0$ and $x_2$ is arbitrary. Hence the eigenvector corresponding to $\lambda_1=0$ is $\begin{bmatrix}0 \\ 1\\ 0 \end{bmatrix}$. For $\lambda_2= 4.561553$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix} \begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} -0.561553 & 0 & 1\\ -2 & -4.561553 & 1\\ 2 & 0& -3.561553 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} -0.561553 & 0 & 1\\ -2 & -4.561553 & 1\\ 2 & 0& -3.561553 \end{bmatrix} \Rightarrow \begin{bmatrix} -0.561553 & 0 & 1\\ 0 & -4.561553 & -2.561553\\ 0 & 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1= 1.780776x_3\\ x_2 = -0.5615528x_3\end{cases}$$ where $x_3$ is arbitrary. Thus the eigenvector corresponding to $\lambda_2=4.561553$ is $\begin{bmatrix}1.780776\\ -0.5615528\\ 1 \end{bmatrix}$. For $\lambda_3= 0.4384472$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix} \begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 3.561553 & 0 & 1\\ -2 & -0.4384472 & 1\\ 2 & 0& 0.5615528 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} 3.561553 & 0 & 1\\ -2 & -0.4384472 & 1\\ 2 & 0& 0.5615528 \end{bmatrix} \Rightarrow \begin{bmatrix} 3.561553 & 0 & 1\\ 0 & -0.4384472 & 1.561553\\ 0 & 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1= -0.2807764x_3\\ x_2 = 3.561553x_3\end{cases}$$ where $x_3$ is arbitrary. Thus the eigenvector corresponding to $\lambda_3= 0.4384472$ is $\begin{bmatrix}-0.2807764\\ 3.561553 \\ 1 \end{bmatrix}$.

4. Find the eigenvalues of these matrices by inspection: (A) $\begin{bmatrix}2& 0& 0\\ 0& -3& 0\\ 0& 0& 6\end{bmatrix}$; (B) $\begin{bmatrix}3& 5& 7\\ 0& -2& 1\\ 0& 0& 0\end{bmatrix}$; (C) $\begin{bmatrix}2& 0& 0\\ 3& 5& 0\\ 2& 1& 6\end{bmatrix}$.

Solution:

The eigenvalues of a triangular matrix are the diagonal entries of the matrix. Thus, (A) $\lambda_1=2,\ \lambda_2=-3,\ \lambda_3=6$. (B) $\lambda_1=3,\ \lambda_2=-2,\ \lambda_3=0$. (C) $\lambda_1=2,\ \lambda_2=5,\ \lambda_3=6$.

5. Find the largest eigenvalue in magnitude and its corresponding vector by using the power method $$[A] = \begin{bmatrix}4& 0& 1\\ -2& 0& 1\\ 2& 0& 1 \end{bmatrix}$$ Start with an initial guess of the eigenvector as $\begin{bmatrix}1\\ -0.5\\ 0.5 \end{bmatrix}$.

Solution:

We will use the R script directly,

A = matrix(c(4, -2, 2, 0, 0, 0, 1, 1, 1), ncol = 3)
PowerEigen(A, x0 = c(1, -0.5, -0.5)) Converged after 9 iterations
$value
[1] 4.561553 $vector
[,1]
[1,] 1.0000000
[2,] -0.3153416
[3,] 0.5615528

6. Prove if $\lambda$ is an eigenvalue of $[A]$, then ${1\over\lambda}$ is an eigenvalue of $[A]^{-1}$.

Solution:

We hope to prove that $A^{-1}X={1\over\lambda}X$ where $AX=\lambda X$. $$A^{-1}X=A^{-1}(\lambda \cdot {1\over\lambda}) X = {1\over\lambda} A^{-1}\lambda X = {1\over\lambda} A^{-1}A X = {1\over\lambda}X$$

7. Prove that square matrices $[A]$ and $[A]^{T}$ have the same eigenvalues.

Solution:

We hope to prove that $\det(A-\lambda I) = \det(A^{T}-\lambda I)$, and an important result is $\det(A) = \det\left(A^{T}\right)$ for $A$ is a square matrix. $$\det(A-\lambda I) = \det\left((A-\lambda I)^{T}\right)$$ $$=\det\left(A^{T}-(\lambda I)^{T}\right)$$ $$=\det\left(A^{T}-\lambda I\right)$$

8. Show that $|\det(A)|$ is the product of the absolute values of the eigenvalues of $[A]$.

Solution:

We hope to prove that $$|\det(A)| =\prod_{i=1}^{n}|\lambda_i|$$ where $\lambda_i$ is the eigenvalues of matrix $A$. By the definition we have $$|\det(A-\lambda I)| = |f(\lambda)| =|(\lambda_1-\lambda)(\lambda_2-\lambda)\cdots(\lambda_n-\lambda)| $$ Set $\lambda=0$ (since it is a variable), we have $$|\det(A)| = |\lambda_1\lambda_2\cdots\lambda_n|= \prod_{i=1}^{n}|\lambda_i|$$

9. What are the eigenvalues of the following matrix? $$\begin{bmatrix}5& 6& 17\\ 0& -19& 23\\ 0& 0& 37 \end{bmatrix}$$

Solution:

This is an upper triangular matrix, hence its eigenvalues are the diagonal elements, that is, 5, -19, and 37.

10. If $\begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -4 \end{bmatrix}$, what is the eigenvalue corresponding to the eigenvector?

Solution:

From the definition we have $AX=\lambda X$, that is $$\begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -4 \end{bmatrix} \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix} =\lambda \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix}-18\\ -16\\ 4 \end{bmatrix} = \lambda \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$$ Hence $\lambda = 4$.

11. The eigenvalues of the following matrix $$\begin{bmatrix}3& 2& 9\\ 7& 5& 13\\ 6& 17& 19\end{bmatrix}$$ are given by solving the cubic equation ( ).

Solution: $$|A-\lambda I| =\det\left( \begin{bmatrix}3-\lambda& 2& 9\\ 7& 5-\lambda& 13\\ 6& 17& 19-\lambda\end{bmatrix}\right)$$ $$= (3-\lambda)\begin{vmatrix}5-\lambda & 13\\ 17 & 19-\lambda\end{vmatrix} - 2\begin{vmatrix}7 & 13\\ 6 & 19-\lambda\end{vmatrix} + 9\begin{vmatrix}7 & 5-\lambda\\ 6 & 17\end{vmatrix}$$ $$= (3-\lambda)\left((5-\lambda)(19-\lambda) - 13\times17\right) - 2\times \left(7(19 - \lambda) - 6 \times 13 \right) + 9 \left(7\times17-6(5-\lambda)\right)$$ $$=\lambda^3 - 27\lambda^2 -122\lambda -313$$

12. The eigenvalues of a $4\times4$ matrix $[A]$ are given as 2, -3, 13, and 7. What is the $|\det(A)|$?

Solution:

Since for a $n\times n$ matrix $$|\det(A)| = \prod_{i=1}^{n}|\lambda_i|$$ Hence we have $$|\det(A)| = |2\times(-3)\times13\times7| = 546$$

13. If one of the eigenvalues of $[A]_{n\times n}$ is zero, it implies ( ).

Solution:

If an eigenvalue is zero, then its determinant must be zero. Furthermore, this means it is a singular matrix (i.e. non-invertible).

14. Given that matrix $$[A] = \begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -3 \end{bmatrix}$$ has an eigenvalue value of 4 with the corresponding eigenvectors of $[x]=\begin{bmatrix}-4.5\\ -4\\ 1\end{bmatrix}$, then what is the value of $[A]^{5}[X]$?

Solution:

Firstly, we show that $A^{m}X=\lambda^{m}X$, where $\lambda$ is an eigenvalue of $[A]$. By Mathematical Induction, we can read off that $n=1$ is correct.\\ Then suppose that $n=m-1$ is correct, that is, $A^{m-1}X = \lambda^{m-1}X$ holds. For $n=m$, we have $$A^{m}X = AA^{m-1}X = A\lambda^{m-1}X =\lambda^{m-1}AX = \lambda^{m-1}\lambda X =\lambda^{m}X$$ as desired. From this result, we have $$A^5X=\lambda^{5}X = 4^5\begin{bmatrix}-4.5\\ -4\\ 1\end{bmatrix} = \begin{bmatrix}-4608\\ -4096\\ 1024\end{bmatrix}$$

A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. 802.11 对于multicast 和 broadcast的处理

    ethernet内部会有broadcast 和 multicast.这两种包都是一个STA向多个STA发包. 当没有wifi存在的时候,LAN口之间的broadcast 和 multicast是可靠转 ...

  2. Win2008上.NET4.0部署出错HTTP 错误 500.21 - Internal Server Error的解决方法

    原因:在安装Framework v4.0之后,再启用IIS,导致Framework没有完全安装 解决:开始->所有程序->附件->鼠标右键点击“命令提示符”->以管理员身份运行 ...

  3. C# 控制台程序实现 Ctrl + V 粘贴功能

    代码主要分为两部分,首先调用系统API注册剪切板相关的事件,然后监控用户的按键操作.完整代码如下: class ClipBoard { [DllImport("user32.dll" ...

  4. 品牌OEM信息导入工具(实测支持Win10)

    OEM修改,定制专属LOGO. 免费下载:http://yunpan.cn/cmZuTYWLIGX6Q  访问密码 2da7 备用通道:            http://pan.baidu.com ...

  5. DatePicker及其监听

    xml文件: <DatePicker android:id="@+id/datep" android:layout_width="wrap_content" ...

  6. mysql的sql_mode合理设置

    mysql的sql_mode合理设置 sql_mode是个很容易被忽视的变量,默认值是空值,在这种设置下是可以允许一些非法操作的,比如允许一些非法数据的插入.在生产环境必须将这个值设置为严格模式,所以 ...

  7. SharePoint Backup

    这里主要介绍使用admin center直接backup: 1.浏览器进入管理中心,选择备份: 2.按需要选择需要备份的内容 3.选择备份位置,然后等待服务器备份完成(windows explore中 ...

  8. LVS + Keepalived + Nginx安装及配置

    1.概述 上篇文章<架构设计:负载均衡层设计方案(6)——Nginx + Keepalived构建高可用的负载层>(http://blog.csdn.net/yinwenjie/artic ...

  9. curl operate elasticsearch

    export elasticsearchwebaddress=localhost:9200# 1. Add documentcurl -X PUT "$elasticsearchwebadd ...

  10. [转]PL/SQLDeveloper导入导出Oracle数据库方法

    原文地址:http://www.2cto.com/database/201405/305452.html 1.Oracle数据库导出步骤 1.1 Tools→Export User Objects.. ...