论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper)

起源:传统激活函数、脑神经元激活频率研究、稀疏激活性

传统Sigmoid系激活函数

传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在。

从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。

从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。

无论是哪种解释,看起来都比早期的线性激活函数(y=x),阶跃激活函数(-1/1,0/1)高明了不少。

近似生物神经激活函数:Softplus&ReLu

2001年,神经科学家Dayan、Abott从生物学角度,模拟出了脑神经元接受信号更精确的激活模型,该模型如左图所示:

这个模型对比Sigmoid系主要变化有三点:①单侧抑制 ②相对宽阔的兴奋边界 ③稀疏激活性(重点,可以看到红框里前端状态完全没有激活)

同年,Charles Dugas等人在做正数回归预测论文中偶然使用了Softplus函数,Softplus函数是Logistic-Sigmoid函数原函数。

$Softplus(x)=log(1+e^{x})$

按照论文的说法,一开始想要使用一个指数函数(天然正数)作为激活函数来回归,但是到后期梯度实在太大,难以训练,于是加了一个log来减缓上升趋势。

加了1是为了保证非负性。同年,Charles Dugas等人在NIPS会议论文中又调侃了一句,Softplus可以看作是强制非负校正函数$\max(0,x)$平滑版本。

偶然的是,同是2001年,ML领域的Softplus/Rectifier激活函数与神经科学领域的提出脑神经元激活频率函数有神似的地方,这促成了新的激活函数的研究。

生物神经的稀疏激活性

在神经科学方面,除了新的激活频率函数之外,神经科学家还发现了神经元的稀疏激活性。

还是2001年,Attwell等人基于大脑能量消耗的观察学习上,推测神经元编码工作方式具有稀疏性和分布性。

2003年Lennie等人估测大脑同时被激活的神经元只有1~4%,进一步表明神经元工作的稀疏性。

从信号方面来看,即神经元同时只对输入信号的少部分选择性响应,大量信号被刻意的屏蔽了,这样可以提高学习的精度,更好更快地提取稀疏特征。

从这个角度来看,在经验规则的初始化W之后,传统的Sigmoid系函数同时近乎有一半的神经元被激活,这不符合神经科学的研究,而且会给深度网络训练带来巨大问题。

Softplus照顾到了新模型的前两点,却没有稀疏激活性。因而,校正函数$\max(0,x)$成了近似符合该模型的最大赢家。

Part I:关于稀疏性的观点

Machine Learning中的颠覆性研究是稀疏特征,基于数据的稀疏特征研究上,派生了Deep Learning这一分支。

稀疏性概念最早由Olshausen、Field在1997年对信号数据稀疏编码的研究中引入,并最早在卷积神经网络中得以大施拳脚。

近年来,稀疏性研究不仅在计算神经科学、机器学习领域活跃,甚至信号处理、统计学也在借鉴。

总结起来稀疏性大概有以下三方面的贡献:

1.1 信息解离

当前,深度学习一个明确的目标是从数据变量中解离出关键因子。原始数据(以自然数据为主)中通常缠绕着高度密集的特征。原因

是这些特征向量是相互关联的,一个小小的关键因子可能牵扰着一堆特征,有点像蝴蝶效应,牵一发而动全身。

基于数学原理的传统机器学习手段在解离这些关联特征方面具有致命弱点。

然而,如果能够解开特征间缠绕的复杂关系,转换为稀疏特征,那么特征就有了鲁棒性(去掉了无关的噪声)。

1.2 线性可分性

稀疏特征有更大可能线性可分,或者对非线性映射机制有更小的依赖。因为稀疏特征处于高维的特征空间上(被自动映射了)

从流形学习观点来看(参见降噪自动编码器),稀疏特征被移到了一个较为纯净的低维流形面上。

线性可分性亦可参照天然稀疏的文本型数据,即便没有隐层结构,仍然可以被分离的很好。

1.3 稠密分布但是稀疏

稠密缠绕分布着的特征是信息最富集的特征,从潜在性角度,往往比局部少数点携带的特征成倍的有效。

而稀疏特征,正是从稠密缠绕区解离出来的,潜在价值巨大。

1.4 稀疏性激活函数的贡献的作用:

不同的输入可能包含着大小不同关键特征,使用大小可变的数据结构去做容器,则更加灵活。

假如神经元激活具有稀疏性,那么不同激活路径上:不同数量(选择性不激活)、不同功能(分布式激活),

两种可优化的结构生成的激活路径,可以更好地从有效的数据的维度上,学习到相对稀疏的特征,起到自动化解离效果。

Part II:基于稀疏性的校正激活函数

2.1 非饱和线性端

撇开稀疏激活不谈,校正激活函数$\max(0,x)$,与Softplus函数在兴奋端的差异较大(线性和非线性)。

几十年的机器学习发展中,我们形成了这样一个概念:非线性激活函数要比线性激活函数更加先进。

尤其是在布满Sigmoid函数的BP神经网络,布满径向基函数的SVM神经网络中,往往有这样的幻觉,非线性函数对非线性网络贡献巨大。

该幻觉在SVM中更加严重。核函数的形式并非完全是SVM能够处理非线性数据的主力功臣(支持向量充当着隐层角色)。

那么在深度网络中,对非线性的依赖程度就可以缩一缩。另外,在上一部分提到,稀疏特征并不需要网络具有很强的处理线性不可分机制。

综合以上两点,在深度学习模型中,使用简单、速度快的线性激活函数可能更为合适。

如图,一旦神经元与神经元之间改为线性激活,网络的非线性部分仅仅来自于神经元部分选择性激活。

2.2 Vanishing Gradient Problem

更倾向于使用线性神经激活函数的另外一个原因是,减轻梯度法训练深度网络时的Vanishing Gradient Problem。

看过BP推导的人都知道,误差从输出层反向传播算梯度时,在各层都要乘当前层的输入神经元值,激活函数的一阶导数。

即$Grad=Error\cdot Sigmoid'(x)\cdot x$。使用双端饱和(即值域被限制)Sigmoid系函数会有两个问题:

①Sigmoid'(x)∈(0,1)  导数缩放

②x∈(0,1)或x∈(-1,1)  饱和值缩放

这样,经过每一层时,Error都是成倍的衰减,一旦进行递推式的多层的反向传播,梯度就会不停的衰减,消失,使得网络学习变慢。

而校正激活函数的梯度是1,且只有一端饱和,梯度很好的在反向传播中流动,训练速度得到了很大的提高。

Softplus函数则稍微慢点,Softplus'(x)=Sigmoid(x)∈(0,1) ,但是也是单端饱和,因而速度仍然会比Sigmoid系函数快。

Part III 潜在问题

强制引入稀疏零的合理性?

诚然,稀疏性有很多优势。但是,过分的强制稀疏处理,会减少模型的有效容量。即特征屏蔽太多,导致模型无法学习到有效特征。

论文中对稀疏性的引入度做了实验,理想稀疏性(强制置0)比率是70%~85%。超过85%,网络就容量就成了问题,导致错误率极高。

对比大脑工作的95%稀疏性来看,现有的计算神经网络和生物神经网络还是有很大差距的。

庆幸的是,ReLu只有负值才会被稀疏掉,即引入的稀疏性是可以训练调节的,是动态变化的。

只要进行梯度训练,网络可以向误差减少的方向,自动调控稀疏比率,保证激活链上存在着合理数量的非零值。

Part IV ReLu的贡献

4.1 缩小做和不做非监督预训练的代沟

ReLu的使用,使得网络可以自行引入稀疏性。这一做法,等效于无监督学习的预训练。

当然,效果肯定没预训练好。论文中给出的数据显示,没做预训练情况下,ReLu激活网络遥遥领先其它激活函数。

甚至出现了比普通激活函数预训练后更好的奇葩情况。当然,在预训练后,ReLu仍然有提升空间。

从这一层面来说,ReLu缩小了非监督学习和监督学习之间的代沟。当然,还有更快的训练速度。

4.2 更快的特征学习

在MNIST+LeNet4中,ReLu+Tanh的组合在epoch 50左右就能把验证集错误率降到1.05%

但是,全Tanh在epoch 150时,还是1.37%,这个结果ReLu+Tanh在epoch 17时就能达到了。

该图来自AlexNet的论文对ReLu和普通Sigmoid系函数做的对比测试,可以看到,ReLu的使用,使得学习周期

大大缩短。综合速率和效率,DL中大部分激活函数应该选择ReLu。

Part V  Theano中ReLu的实现

ReLu可以直接用T.maximum(0,x)实现,用T.max(0,x)不能求导.

Part VI  ReLu训练技巧

Cifar-10训练技巧

ReLu(Rectified Linear Units)激活函数的更多相关文章

  1. 【深度学习】深入理解ReLU(Rectifie Linear Units)激活函数

    论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有 ...

  2. 修正线性单元(Rectified linear unit,ReLU)

    修正线性单元(Rectified linear unit,ReLU) Rectified linear unit 在神经网络中,常用到的激活函数有sigmoid函数f(x)=11+exp(−x).双曲 ...

  3. Deep Learning 22:总结一些deep learning的基本知识

    1.交叉熵代价函数 2.正则化方法:L1和L2 regularization.数据集扩增.dropout 3. 数据预处理 4.机器学习算法中如何选取超参数:学习速率.正则项系数.minibatch ...

  4. 学习笔记TF048:TensorFlow 系统架构、设计理念、编程模型、API、作用域、批标准化、神经元函数优化

    系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remo ...

  5. TensorFlow入门学习(让机器/算法帮助我们作出选择)

    catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...

  6. TensorFlow运作方式入门

    TensorFlow运作方式入门 代码:tensorflow/g3doc/tutorials/mnist/ 本篇教程的目的,是向大家展示如何利用TensorFlow使用(经典)MNIST数据集训练并评 ...

  7. Tensorflow官方文档中文版——第二章(瞎奖杯写)

    包含如下几个部分: 1.面向机器学习初学者的 MNIST 初级教程 2.面向机器学习专家的 MNIST 高级教程 3.TensorFlow 使用指南 4.卷积神经网络 5.单词的向量表示(word e ...

  8. Coursera ML笔记 - 神经网络(Representation)

    前言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew N ...

  9. CNN卷积层:ReLU函数

    卷积层的非线性部分 一.ReLU定义 ReLU:全称 Rectified Linear Units)激活函数 定义 def relu(x): return x if x >0 else 0 #S ...

随机推荐

  1. Linux 下根据进程名kill进程

    脚本方式实现: #!/bin/sh #根据进程名杀死进程 if [ $# -lt 1 ] then echo "缺少参数:procedure_name" exit 1 fi PRO ...

  2. sp_who使用

    [SQL Server]  sp_who, sp_who2和sp_who3 sp_who可以返回如下信息: (可选参数LoginName, 或active代表活动会话数)Spid         (系 ...

  3. static_cast、dynamic_cast、reinterpret_cast、const_cast以及C强制类型转换的区别

    static_cast 1. 基础类型之间互转.如:float转成int.int转成unsigned int等 2. 指针与void*之间互转.如:float*转成void*.CBase*转成void ...

  4. OpenCV-paper detection & perspective transformation 相关资料

    经过一段时间的搜索,决定把搜过的资料都汇集在此,以免重复劳动,几乎来自stackoverflow OpenCV C++/Obj-C: Detecting a sheet of paper / Squa ...

  5. MS SQL 合并结果集并求和 分类: SQL Server 数据库 2015-02-13 10:59 92人阅读 评论(0) 收藏

    业务情景:有这样一张表:其中Id列为表主键,Name为用户名,State为记录的状态值,Note为状态的说明,方便阅读. 需求描述:需要查询出这样的结果:某个人某种状态的记录数,如:张三,待审核记录数 ...

  6. html5 svg

    html5 svg <html > <body> <p>canvas 用js 绘画,是整幅画布,适合游戏 svg可放大,支持dom 操作,js事件 线性渐变.高斯模 ...

  7. C# DateTime时间格式转换为Unix时间戳格式

    double ntime=dateTimeToUnixTimestamp(DateTime.Now); long g1 = GetUnixTimestamp(); long g2 = ConvertD ...

  8. PHP商品秒杀计时实现(解决大流量方案)

    PHP商品秒杀功能我们多半以整点或时间点为例子,这样对于php来说处理不复杂,但有一个问题就是如果流量大要如何来处理,下面我们一起来看看解决办法. 要求要有小时分钟秒的实时倒计时的显示,用户端修改日期 ...

  9. hdu 2232 矩阵 ***

    一天四个不同的机器人a.b.c和d在一张跳舞毯上跳舞,这是一张特殊的跳舞毯,他由4个正方形毯子组成一个大的正方形毯子,一开始四个机器人分别站在4 块毯子上,舞蹈的每一步机器人可以往临近(两个毯子拥有同 ...

  10. [Linux][Hadoop] 将hadoop跑起来

    前面安装过程待补充,安装完成hadoop安装之后,开始执行相关命令,让hadoop跑起来   使用命令启动所有服务: hadoop@ubuntu:/usr/local/gz/hadoop-$ ./sb ...