HDU-2844 Coins(多重背包)
You are to write a
program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to
the number of Tony's coins of value A1,A2,A3...An then calculate how
many prices(form 1 to m) Tony can pay use these coins.
input contains several test cases. The first line of each test case
contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line
contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤
100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
const int max_size = + ;
const int MAX = ;
int dp[max_size];
bool vis[max_size]; int main()
{
//1.将问题的模型抽象出来
int cnt, vol;
int val[MAX];
int num[MAX];
while(scanf("%d %d", &cnt, &vol) != EOF)
{
memset(dp, , sizeof(dp));
memset(vis, false, sizeof(vis));
if(cnt == && vol == )
break;
for(int i = ; i < cnt; i++)
scanf("%d", val+i);
for(int i = ; i < cnt; i++)
scanf("%d", num+i); for(int i = ; i < cnt; i++)
{
if(val[i] * num[i] >= vol)
{
//CompletePack(val[i], val[i]); //那么多的价值,那么多的占用? for(int j = val[i]; j <= vol; j++) ///多重背包这里错了两次了,要注意,昨天找了一晚上
{
dp[j] = max(dp[j], dp[j - val[i]] + val[i]);
vis[dp[j]] = true;
}
continue;
}
int k = ;
while(k < num[i])
{
//ZeroOnePack(k*val[i], k*val[i]);
for(int j = vol; j - k * val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j-k*val[i]] + k*val[i]);
vis[dp[j]] = true;
}
num[i] -= k;
k *= ;
}
//ZeroOnePack(num[i]*val[i], num[i]*val[i]);
for(int j = vol; j - num[i]*val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j - num[i]*val[i]] + num[i]*val[i]);
vis[dp[j]] = true;
}
} int ans = ;
for(int i = ; i <= vol; i++)
{
ans += (vis[i] == true) ? : ;
}
printf("%d\n", ans);
}
return ;
}
HDU-2844 Coins(多重背包)的更多相关文章
- hdu 2844 Coins (多重背包+二进制优化)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...
- HDu -2844 Coins多重背包
这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...
- HDU - 2844 Coins(多重背包+完全背包)
题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...
- HDU 2844 Coins (多重背包计数 空间换时间)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- hdu 2844 coins(多重背包 二进制拆分法)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- hdu 2844 Coins 多重背包(模板) *
Coins Time Limit: 2000/1 ...
- HDU 2844 Coin 多重背包
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)
作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...
- HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)
HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
随机推荐
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- hdu1115(计算多边形几何重心)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1115 题意:给出一些点,求这些点围成的多边形的重心: 思路: 方法1:直接分别求所有点的x坐标的平均值 ...
- Struts2拦截器之FileUploadInterceptor
一.它能做什么? 借助于这个拦截器我们可以实现文件的上传和下载功能. 理论部分: struts2的文件上传下载功能也要依赖于Apache commons-fileupload和Apache commo ...
- OkHttp学习总结
This paper mainly includes the following contents okhttp ordinary operation. okhttp interceptors. Re ...
- 浅谈 switch和if
1.所有的switch 都可以用if 替换,但所有的if不一定能被switch替换 2.:switch case直接跳到对应的case值里面执行相应代码.而if语句会执行一条一条判断语句,直到匹配到对 ...
- HTML5 – 2.新元素
figcaption 定义和用法 <figcaption> 标签定义 figure 元素的标题(caption). "figcaption" 元素应该被置于 " ...
- 17.观察者模式(Observer Pattern)
using System; using System.Collections.Generic; namespace ConsoleApplication10 { /// <summary> ...
- Linux(CentOS)常用操作指令(一)
基本指令集合 1.查看CentOS版本信息 cat /proc/version cat /etc/redhat-release 2.查看安全日志文件信息 tail -f /var/log/secure ...
- C# 重绘tabControl,添加关闭按钮(页签)
C# 重绘tabControl,添加关闭按钮(页签) 调用方法 参数: /// <summary> /// 初始化 /// </summary> /// <param n ...
- EF Core 1.0中使用Include的小技巧
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:由于EF Core暂时不支持Lazy Loading,所以利用Include来加载额外 ...