HDU-2844 Coins(多重背包)
You are to write a
program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to
the number of Tony's coins of value A1,A2,A3...An then calculate how
many prices(form 1 to m) Tony can pay use these coins.
input contains several test cases. The first line of each test case
contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line
contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤
100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
const int max_size = + ;
const int MAX = ;
int dp[max_size];
bool vis[max_size]; int main()
{
//1.将问题的模型抽象出来
int cnt, vol;
int val[MAX];
int num[MAX];
while(scanf("%d %d", &cnt, &vol) != EOF)
{
memset(dp, , sizeof(dp));
memset(vis, false, sizeof(vis));
if(cnt == && vol == )
break;
for(int i = ; i < cnt; i++)
scanf("%d", val+i);
for(int i = ; i < cnt; i++)
scanf("%d", num+i); for(int i = ; i < cnt; i++)
{
if(val[i] * num[i] >= vol)
{
//CompletePack(val[i], val[i]); //那么多的价值,那么多的占用? for(int j = val[i]; j <= vol; j++) ///多重背包这里错了两次了,要注意,昨天找了一晚上
{
dp[j] = max(dp[j], dp[j - val[i]] + val[i]);
vis[dp[j]] = true;
}
continue;
}
int k = ;
while(k < num[i])
{
//ZeroOnePack(k*val[i], k*val[i]);
for(int j = vol; j - k * val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j-k*val[i]] + k*val[i]);
vis[dp[j]] = true;
}
num[i] -= k;
k *= ;
}
//ZeroOnePack(num[i]*val[i], num[i]*val[i]);
for(int j = vol; j - num[i]*val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j - num[i]*val[i]] + num[i]*val[i]);
vis[dp[j]] = true;
}
} int ans = ;
for(int i = ; i <= vol; i++)
{
ans += (vis[i] == true) ? : ;
}
printf("%d\n", ans);
}
return ;
}
HDU-2844 Coins(多重背包)的更多相关文章
- hdu 2844 Coins (多重背包+二进制优化)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...
- HDu -2844 Coins多重背包
这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...
- HDU - 2844 Coins(多重背包+完全背包)
题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...
- HDU 2844 Coins (多重背包计数 空间换时间)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- hdu 2844 coins(多重背包 二进制拆分法)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- hdu 2844 Coins 多重背包(模板) *
Coins Time Limit: 2000/1 ...
- HDU 2844 Coin 多重背包
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)
作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...
- HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)
HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
随机推荐
- css3圣诞雪景球开源
css3圣诞雪景球开源 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...
- Mysql事务隔离级别
在说Isolation之前,需要谈谈关系型数据库的ACID特性. A(atomicity,原子性),指一个事务要么完全完成,要么全部回滚到起始状态,不存在中间状态. C(Consistency,一致性 ...
- merge
当两个DataFrame相加的时候,如果,其中一个不全则会相加产生NA,所以必须一次性将数据的索引索引确定下来,然后对所有数据重建索引然后,填充0,再相加.否则有数据的和没数据的相加结果都变为了NA, ...
- NYOJ题目101两点距离
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsEAAAIBCAIAAAAnO/WXAAAgAElEQVR4nO3dq3IbSeM34L0Jc/O9BW
- Hbernate映射类型
对应oracle中的数据库:用timestamp
- 二、JavaScript语言--JS实践--商城分类导航效果
商城类导航菜单制作(以京东为例--竖向列表横向伸缩) 可以用两种方式来实现:用CSS实现和用JS实现 方法一:用CSS实现(要点:使用hover) <!DOCTYPE html PUBLIC & ...
- loadrunner支持https协议的操作方法-经验总结
问题:用户portal支持https协议,用loadrunner录制登陆脚本时发现未录制到用户名和密码 录制到的脚本如下: login() { lr_think_time(10); web_url(& ...
- php 上传文件实例 注册账号
注册界面 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- ApiWrapper
前面两片文章讲解了通过AIDL和Messenger两种方式实现Android IPC.而本文所讲的并不是第三种IPC方式,而是对前面两种方式进行封装,这样我们就不用直接把Aidl文件,java文件拷贝 ...
- Oracle Redo Log
http://blog.itpub.net/27039319/viewspace-2120623/ 11.2和11.2以下的区别:http://blog.itpub.net/27039319/view ...