Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.

You are to write a
program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to
the number of Tony's coins of value A1,A2,A3...An then calculate how
many prices(form 1 to m) Tony can pay use these coins.

 
Input
The
input contains several test cases. The first line of each test case
contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line
contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤
100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
 
Output
For each test case output the answer on a single line.
 
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
Sample Output
8
4
 
题目就是让你用所给的 种类一定,数目一定的硬币,看能组成的数字有那先(当然,询问范围是1 ~ m)
还是列出已知条件,硬币的种类,每类的个数,查询范围(1 ~ m)
在多重背包里,我们用到的条件有:背包容量,物品种类,物品每类的数量, 物品每类所用的体积大小
抽象这道题目,我们直观的知道,硬币的种类,硬币每类的数量,每类硬币的面值。题目里只有这 3 个条件, 做背包问题一定会涉及“物品占用体积的大小”,而这道题完全没有提 ,因为我们最后求的是所能组成面值的总数。 这里提一下,我们的面值,既可以当作物品的重量,又可以当作物品占的体积
 
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
const int max_size = + ;
const int MAX = ;
int dp[max_size];
bool vis[max_size]; int main()
{
//1.将问题的模型抽象出来
int cnt, vol;
int val[MAX];
int num[MAX];
while(scanf("%d %d", &cnt, &vol) != EOF)
{
memset(dp, , sizeof(dp));
memset(vis, false, sizeof(vis));
if(cnt == && vol == )
break;
for(int i = ; i < cnt; i++)
scanf("%d", val+i);
for(int i = ; i < cnt; i++)
scanf("%d", num+i); for(int i = ; i < cnt; i++)
{
if(val[i] * num[i] >= vol)
{
//CompletePack(val[i], val[i]); //那么多的价值,那么多的占用? for(int j = val[i]; j <= vol; j++) ///多重背包这里错了两次了,要注意,昨天找了一晚上
{
dp[j] = max(dp[j], dp[j - val[i]] + val[i]);
vis[dp[j]] = true;
}
continue;
}
int k = ;
while(k < num[i])
{
//ZeroOnePack(k*val[i], k*val[i]);
for(int j = vol; j - k * val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j-k*val[i]] + k*val[i]);
vis[dp[j]] = true;
}
num[i] -= k;
k *= ;
}
//ZeroOnePack(num[i]*val[i], num[i]*val[i]);
for(int j = vol; j - num[i]*val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j - num[i]*val[i]] + num[i]*val[i]);
vis[dp[j]] = true;
}
} int ans = ;
for(int i = ; i <= vol; i++)
{
ans += (vis[i] == true) ? : ;
}
printf("%d\n", ans);
}
return ;
}

HDU-2844 Coins(多重背包)的更多相关文章

  1. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  2. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  3. HDU - 2844 Coins(多重背包+完全背包)

    题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...

  4. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  6. hdu 2844 Coins 多重背包(模板) *

    Coins                                                                             Time Limit: 2000/1 ...

  7. HDU 2844 Coin 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  10. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

随机推荐

  1. 实现iOS前台时的推送弹窗效果

    原文链接 或许很多童鞋还不知道,在 iOS 中收到推送通知时,如果 App 处于前台运行的情况下,推送的顶部弹窗是不会弹出来的. 然而就是有很多**的产品经理都会提出类似这样的**需求:那就是在 Ap ...

  2. jQuery - 1.简单的JQuery

    1.简单的JQuery 2.jQuery对象(包装集).Dom对象 3.JQuery提供的函数 1.简单的JQuery $(document).ready(function () { alert(&q ...

  3. .NET Nancy 详解(二) 简易路由实现

    继续上面的简易版本,有意思的点剩下便是路由实现了. 路由注册 首先,来看一下基本的路由注册过程. public FakeNancyModuleWithoutBasePath() { Delete[&q ...

  4. PHPCMS V9 WAP手机门户域名绑定

    如需要绑定域名为wap.domain.com,作下如操作: 一.把wap.domain.com域名绑定到你的这个网站主机上. 二.在网站后台模块>手机门户域名里面填写“http://wap.do ...

  5. 在source insight中集成astyle

    转自:http://www.cnblogs.com/xuxm2007/archive/2013/04/06/3002390.html 好吧,我有代码格式的强迫症,代码不整齐,我看的都头疼,之前一直喜欢 ...

  6. javascript settimeout and setinterval

    setTimeout只运行一次,也就是说设定的时间到后就触发运行指定代码,运行完后即结束.如果运行的代码中再次运行同样的setTimeout命令,则可循环运行.setinterval是循环运行的,即每 ...

  7. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

  8. 安装PIL

    本来直接pip install PIL的,一直说找不到对应的版本,在廖雪峰老师的博客里发现原来PIL只更新到pytyon 2.7 后来就只有Pillow了,而我的版本是2.7.9 用的时候直接from ...

  9. LayoutInflater(二)

    每一个视图的绘制过程都必须经历三个最主要的阶段,即onMeasure().onLayout()和onDraw(),下面我们逐个对这三个阶段展开进行探讨. 一. onMeasure() measure是 ...

  10. linux查看和修改系统时间

    设置日期:date -s 20091112 设置时间:date -s 18:30:50 日期和时间一起设置: date 111218302009 (月日时分年) date -s "20091 ...