Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.

You are to write a
program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to
the number of Tony's coins of value A1,A2,A3...An then calculate how
many prices(form 1 to m) Tony can pay use these coins.

 
Input
The
input contains several test cases. The first line of each test case
contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line
contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤
100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
 
Output
For each test case output the answer on a single line.
 
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
Sample Output
8
4
 
题目就是让你用所给的 种类一定,数目一定的硬币,看能组成的数字有那先(当然,询问范围是1 ~ m)
还是列出已知条件,硬币的种类,每类的个数,查询范围(1 ~ m)
在多重背包里,我们用到的条件有:背包容量,物品种类,物品每类的数量, 物品每类所用的体积大小
抽象这道题目,我们直观的知道,硬币的种类,硬币每类的数量,每类硬币的面值。题目里只有这 3 个条件, 做背包问题一定会涉及“物品占用体积的大小”,而这道题完全没有提 ,因为我们最后求的是所能组成面值的总数。 这里提一下,我们的面值,既可以当作物品的重量,又可以当作物品占的体积
 
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
const int max_size = + ;
const int MAX = ;
int dp[max_size];
bool vis[max_size]; int main()
{
//1.将问题的模型抽象出来
int cnt, vol;
int val[MAX];
int num[MAX];
while(scanf("%d %d", &cnt, &vol) != EOF)
{
memset(dp, , sizeof(dp));
memset(vis, false, sizeof(vis));
if(cnt == && vol == )
break;
for(int i = ; i < cnt; i++)
scanf("%d", val+i);
for(int i = ; i < cnt; i++)
scanf("%d", num+i); for(int i = ; i < cnt; i++)
{
if(val[i] * num[i] >= vol)
{
//CompletePack(val[i], val[i]); //那么多的价值,那么多的占用? for(int j = val[i]; j <= vol; j++) ///多重背包这里错了两次了,要注意,昨天找了一晚上
{
dp[j] = max(dp[j], dp[j - val[i]] + val[i]);
vis[dp[j]] = true;
}
continue;
}
int k = ;
while(k < num[i])
{
//ZeroOnePack(k*val[i], k*val[i]);
for(int j = vol; j - k * val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j-k*val[i]] + k*val[i]);
vis[dp[j]] = true;
}
num[i] -= k;
k *= ;
}
//ZeroOnePack(num[i]*val[i], num[i]*val[i]);
for(int j = vol; j - num[i]*val[i] >= ; j--)
{
dp[j] = max(dp[j], dp[j - num[i]*val[i]] + num[i]*val[i]);
vis[dp[j]] = true;
}
} int ans = ;
for(int i = ; i <= vol; i++)
{
ans += (vis[i] == true) ? : ;
}
printf("%d\n", ans);
}
return ;
}

HDU-2844 Coins(多重背包)的更多相关文章

  1. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  2. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  3. HDU - 2844 Coins(多重背包+完全背包)

    题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...

  4. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  6. hdu 2844 Coins 多重背包(模板) *

    Coins                                                                             Time Limit: 2000/1 ...

  7. HDU 2844 Coin 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  10. POJ 3260 The Fewest Coins(多重背包+全然背包)

    POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...

随机推荐

  1. Android单元测试

    安卓单元测试总结文章,目测主要会cover以下的主题: 什么是单元测试 为什么要做单元测试 JUnit Mockito Robolectric Dagger2 一个具体的app例子实践 神秘的bonu ...

  2. JAVA数据库基本操作 (转)

    JAVA数据库基本操作指南   Java数据库操作基本流程:取得数据库连接 - 执行sql语句 - 处理执行结果 - 释放数据库连接. 一.取得数据库连接 1.用DriverManager取数据库连接 ...

  3. Elasticsearch在Windows下的安装

    下载Elasticsearch,地址:elasticsearch.org/download 下载jdk,百度搜索jdk下载即可 配置JAVA_HOME变量,配置方法在此文:http://jingyan ...

  4. 【JAVA单例模式详解】

    设计模式是一种思想,适合于任何一门面向对象的语言.共有23种设计模式. 单例设计模式所解决的问题就是:保证类的对象在内存中唯一. 举例: A.B类都想要操作配置文件信息Config.java,所以在方 ...

  5. 【PHP&&FileIO】

    在程序员的眼中,文件不应当仅仅是一部电影.一首歌曲.一个pdf文件,它应该被视为一个文件夹,而我们所熟知的文件,应当是它的特例. 在web开发中,文件的上传和下载是文件变成的一个实际应用. 延续cru ...

  6. 【PHP用户的错误日志】

    将产生的错误保存在日志中的方法:使用error_log方法,其中,当日志类型是3的时候,下一个参数将会是日志文件的保存路径 使用示例: <?php function myerror($level ...

  7. [Java] xms xmx XX:PermSize XX:MaxPermSize 参数意义解析

    今天在做jmeter压力测试时又出现以前经常出现的异常,如下图,长时间不弄这个的,又有点不知所措了,所以干脆再来总结一下问题: 以前写过两篇文章,对这个问题研究过,见下面连接: 连接1:http:// ...

  8. [Monitor] 监控规则定义

    系统监控规则:

  9. Chrome书签被篡改之后的恢复

    chrome书签和备份存放的路径:(XXXX为用户名)(AppData文件夹为隐藏文件夹) \Users\XXXX\AppData\Local\Google\Chrome\User Data\Defa ...

  10. 用C获得当前系统时间(转)

    #include <stdio.h> #include <time.h> void main () { time_t rawtime; struct tm * timeinfo ...