hadoop版本:1.1.2

一、Mapper类的结构

Mapper类是Job.setInputFormatClass()方法的默认值,Mapper类将输入的键值对原封不动地输出。

org.apache.hadoop.mapreduce.Mapper类的结构如下:

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

  public class Context
extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public Context(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) throws IOException, InterruptedException {
super(conf, taskid, reader, writer, committer, reporter, split);
}
} /**
* Called once at the beginning of the task.
* 在task开始之前调用一次
*
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
* 对数据分块中的每个键值对都调用一次
*
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
} /**
* Called once at the end of the task.
* 在task结束后调用一次
*
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* 默认先调用一次setup方法,然后循环对每个键值对调用map方法,最后调用一次cleanup方法。
*
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
cleanup(context);
}
}

二、Reducer类的结构

Reducer类是Job.setOutputFormatClass()方法的默认值,Reducer类将输入的键值对原封不动地输出。

org.apache.hadoop.mapreduce.Reduce与Mapper类似。

public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {

  public class Context
extends ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public Context(Configuration conf, TaskAttemptID taskid,
RawKeyValueIterator input,
Counter inputKeyCounter,
Counter inputValueCounter,
RecordWriter<KEYOUT,VALUEOUT> output,
OutputCommitter committer,
StatusReporter reporter,
RawComparator<KEYIN> comparator,
Class<KEYIN> keyClass,
Class<VALUEIN> valueClass
) throws IOException, InterruptedException {
super(conf, taskid, input, inputKeyCounter, inputValueCounter,
output, committer, reporter,
comparator, keyClass, valueClass);
}
} /**
* Called once at the start of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* This method is called once for each key. Most applications will define
* their reduce class by overriding this method. The default implementation
* is an identity function.
*/
@SuppressWarnings("unchecked")
protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
) throws IOException, InterruptedException {
for(VALUEIN value: values) {
context.write((KEYOUT) key, (VALUEOUT) value);
}
} /**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Advanced application writers can use the
* {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to
* control how the reduce task works.
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
}
cleanup(context);
}
}

三、hadoop提供的mapper和reducer实现

我们不一定总是要从头开始自己编写自己的Mapper和Reducer类。Hadoop提供了几种常见的Mapper和Reducer的子类,这些类可以直接用于我们的作业当中。

mapper可以在org.apache.hadoop.mapreduce.lib.map包下面找到如下子类:

  • InverseMapper:A Mapper hat swaps keys and values.
  • MultithreadedMapper:Multithreaded implementation for org.apache.hadoop.mapreduce.Mapper.
  • TokenCounterMapper:Tokenize the input values and emit each word with a count of 1.

reducer可以在org.apache.hadoop.mapreduce.lib.reduce包下面找到如下子类:

  • IntSumReducer:它输出每个键对应的整数值列表的总和。
  • LongSumReducer:它输出每个键对应的长整数值列表的总和。

四、MapReduce的输入

1、InputFormat抽象类
 

该类的作用是将输入的数据分割成一个个的split,并将split进一步拆分成键值对作为map函数的输入。

该类位于org.apache.hadoop.mapreduce包下。

InputFormat describes the input-specification for a Map-Reduce job.

The Map-Reduce framework relies on the InputFormat of the job to:

  1. Validate the input-specification of the job.
  2. Split-up the input file(s) into logical InputSplits, each of which is then assigned to an individual Mapper.
  3. Provide the RecordReader implementation to be used to glean input records from the logical InputSplit for processing by the Mapper.

The default behavior of file-based InputFormats, typically sub-classes of FileInputFormat, is to split the input into logical InputSplits based on the total size, in bytes, of the input files. However, the FileSystem blocksize of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via mapred.min.split.size.

Clearly, logical splits based on input-size is insufficient for many applications since record boundaries are to respected. In such cases, the application has to also implement a RecordReader on whom lies the responsibility to respect record-boundaries and present a record-oriented view of the logical InputSplit to the individual task.

2、RecordReader抽象类

该类位于org.apache.hadoop.mapreduce包下。

The record reader breaks the data into key/value pairs for input to the Mapper.

3、hadoop提供的InputFormat

hadoop在org.apache.hadoop.mapreduce.lib.input包下提供了一些InputFormat的实现。hadoop默认使用TextInputFormat类处理输入。

4、hadoop提供的RecordReader

hadoop在org.apache.hadoop.mapreduce.lib.input包下也提供了一些RecordReader的实现。

五、MapReduce的输出

1、OutputFormat抽象类
 
该类位于org.apache.hadoop.mapreduce包下。
OutputFormat describes the output-specification for a Map-Reduce job.

The Map-Reduce framework relies on the OutputFormat of the job to:

  • Validate the output-specification of the job. For e.g. check that the output directory doesn't already exist.
  • Provide the RecordWriter implementation to be used to write out the output files of the job. Output files are stored in a FileSystem.

2、RecordWriter抽象类

该类位于org.apache.hadoop.mapreduce包下。

RecordWriter writes the output <key, value> pairs to an output file.

RecordWriter implementations write the job outputs to the FileSystem.

3、hadoop提供的OutputFormat

hadoop在org.apache.hadoop.mapreduce.lib.output包下提供了一些OutputFormat的实现。hadoop默认使用TextOutputFormat类处理输出。

4、hadoop提供的RecordWriter

在org.apache.hadoop.mapreduce.lib.input包下的OutputFormat的实现类(子类)将它们所需的RecordWriter定义为内部类,因此不存在单独实现的RecordWriter类。

六、MapReduce各阶段涉及到的类

P70-71

1、InputFormat类

2、Mapper类

3、Combiner类

4、Partitioner类

5、Reducer类

6、OutputFormat类

7、其他

七、详解Shuffle过程:http://langyu.iteye.com/blog/992916

map->shuffle->reduce

P60-64,例子P64-68

附:WEB接口的端口号配置:

mapred-default.xml

<property>
<name>mapred.job.tracker.http.address</name>
<value>0.0.0.0:50030</value>
<description>
The job tracker http server address and port the server will listen on.
If the port is 0 then the server will start on a free port.
</description>
</property>

hdfs-default.xml

<property>
<name>dfs.http.address</name>
<value>0.0.0.0:50070</value>
<description>
The address and the base port where the dfs namenode web ui will listen on.
If the port is 0 then the server will start on a free port.
</description>
</property>

MapReduce基础知识的更多相关文章

  1. 小记---------Hadoop的MapReduce基础知识

    MapReduce是一种分布式计算模型,主要用于搜索领域,解决海量数据的计算问题 MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算. 两 ...

  2. 基于C#的MongoDB数据库开发应用(1)--MongoDB数据库的基础知识和使用

    在花了不少时间研究学习了MongoDB数据库的相关知识,以及利用C#对MongoDB数据库的封装.测试应用后,决定花一些时间来总结一下最近的研究心得,把这个数据库的应用单独作为一个系列来介绍,希望从各 ...

  3. MongoDB基础知识 02

    MongoDB基础知识 02 6 数据类型 6.1 null : 表示空值或者不存在的字段 {"x":null} 6.2 布尔型 : 布尔类型只有两个值true和false {&q ...

  4. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  5. 最全的spark基础知识解答

    原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...

  6. JAVA基础知识|lambda与stream

    lambda与stream是java8中比较重要两个新特性,lambda表达式采用一种简洁的语法定义代码块,允许我们将行为传递到函数中.之前我们想将行为传递到函数中,仅有的选择是使用匿名内部类,现在我 ...

  7. 常见问题:MongoDB基础知识

    常见问题:MongoDB基础知识 ·MongoDB支持哪些平台? ·MongoDB作为托管服务提供吗? ·集合(collection)与表(table)有何不同? ·如何创建数据库(database) ...

  8. Hive 这些基础知识,你忘记了吗?

    Hive 其实是一个客户端,类似于navcat.plsql 这种,不同的是Hive 是读取 HDFS 上的数据,作为离线查询使用,离线就意味着速度很慢,有可能跑一个任务需要几个小时甚至更长时间都有可能 ...

  9. [源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识

    [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并 ...

随机推荐

  1. scrapy系统学习(1)--概要

    本文操作环境:ubuntu14.04 一.安装Scrapy/Mysql/MySQLdb 参照官网教程安装Scrapy #sudo apt-key adv --keyserver hkp://keyse ...

  2. PHP核心技术与最佳实践--笔记

    <?php error_reporting(E_ALL); /* php 5.3引入 延迟静态绑定 */ /* php5.4引入trait,用来实现多层继承 trait Hello{} trai ...

  3. 规范化注释 VVDocumenter的使用方法

    很多时候,为了快速开发,很多的技术文档都是能省则省,这个时候注释就变得异常重要,但是每次都要手动输入规范化的注释,着实也麻烦,但有了VVDocumenter,规范化的注释,主需要输入三个斜线“///” ...

  4. BZOJ 3524: [Poi2014]Couriers

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1905  Solved: 691[Submit][St ...

  5. 50个查询系列-第13个查询:把“SC”表中“叶平”老师教的课的成绩都更改为此课程的平均成绩;

    UPDATE tblscore SET tblscore.Score= ( -- 这里开始算叶平的平均值 SELECT AVG(tt.aa) FROM ( SELECT tblscore.Score ...

  6. centos 命令集合

    链接: http://www.cnblogs.com/zitsing/archive/2012/05/02/2479009.html http://www.centoscn.com/CentOS/he ...

  7. 启动PPT的时候一直配置vs2013的问题解决

    前几天装了VS2013,结果发现每次启动powerpoint都要配置vs2013,虽然时间花的不多,可我看的就是碍眼,我都想把VS2013卸载来解决了.后来抱着试下的态度竟然在google上找到了解决 ...

  8. 后台运行程序screen or nohup

    后台运行 方法1 &   方法2:screen screen –S lnmp à起个名字 进去后运行程序 Ctrl+ad à退出lnmp屏幕 Scree –ls à查看 Screen –r x ...

  9. struts2 DMI

    在使用DMI(动态方法调用)的时候要注意struts.xml配置时要把 <constant name="struts.enable.DynamicMethodInvocation&qu ...

  10. Spring MVC 急速集成 Shiro 实录

    相信有很多的程序员,不愿意进行用户管理这块代码实现. 原因之一,不同的JavaEE 系统,用户管理都会有个性化的实现,逻辑很繁琐. 而且是系统门面,以后背锅的几率非常大,可谓是低收益高风险. 最近在系 ...