MapReduce基础知识
hadoop版本:1.1.2
一、Mapper类的结构
Mapper类是Job.setInputFormatClass()方法的默认值,Mapper类将输入的键值对原封不动地输出。
org.apache.hadoop.mapreduce.Mapper类的结构如下:

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
public class Context
extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public Context(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) throws IOException, InterruptedException {
super(conf, taskid, reader, writer, committer, reporter, split);
}
}
/**
* Called once at the beginning of the task.
* 在task开始之前调用一次
*
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
* 对数据分块中的每个键值对都调用一次
*
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
}
/**
* Called once at the end of the task.
* 在task结束后调用一次
*
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* 默认先调用一次setup方法,然后循环对每个键值对调用map方法,最后调用一次cleanup方法。
*
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
cleanup(context);
}
}
二、Reducer类的结构
Reducer类是Job.setOutputFormatClass()方法的默认值,Reducer类将输入的键值对原封不动地输出。
org.apache.hadoop.mapreduce.Reduce与Mapper类似。

public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public class Context
extends ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
public Context(Configuration conf, TaskAttemptID taskid,
RawKeyValueIterator input,
Counter inputKeyCounter,
Counter inputValueCounter,
RecordWriter<KEYOUT,VALUEOUT> output,
OutputCommitter committer,
StatusReporter reporter,
RawComparator<KEYIN> comparator,
Class<KEYIN> keyClass,
Class<VALUEIN> valueClass
) throws IOException, InterruptedException {
super(conf, taskid, input, inputKeyCounter, inputValueCounter,
output, committer, reporter,
comparator, keyClass, valueClass);
}
}
/**
* Called once at the start of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* This method is called once for each key. Most applications will define
* their reduce class by overriding this method. The default implementation
* is an identity function.
*/
@SuppressWarnings("unchecked")
protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
) throws IOException, InterruptedException {
for(VALUEIN value: values) {
context.write((KEYOUT) key, (VALUEOUT) value);
}
}
/**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
}
/**
* Advanced application writers can use the
* {@link #run(org.apache.hadoop.mapreduce.Reducer.Context)} method to
* control how the reduce task works.
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
}
cleanup(context);
}
}
三、hadoop提供的mapper和reducer实现
我们不一定总是要从头开始自己编写自己的Mapper和Reducer类。Hadoop提供了几种常见的Mapper和Reducer的子类,这些类可以直接用于我们的作业当中。
mapper可以在org.apache.hadoop.mapreduce.lib.map包下面找到如下子类:
- InverseMapper:A Mapper hat swaps keys and values.
- MultithreadedMapper:Multithreaded implementation for org.apache.hadoop.mapreduce.Mapper.
- TokenCounterMapper:Tokenize the input values and emit each word with a count of 1.
reducer可以在org.apache.hadoop.mapreduce.lib.reduce包下面找到如下子类:
- IntSumReducer:它输出每个键对应的整数值列表的总和。
- LongSumReducer:它输出每个键对应的长整数值列表的总和。
四、MapReduce的输入

该类的作用是将输入的数据分割成一个个的split,并将split进一步拆分成键值对作为map函数的输入。
InputFormat describes the input-specification for a Map-Reduce job.
The Map-Reduce framework relies on the InputFormat of the job to:
- Validate the input-specification of the job.
- Split-up the input file(s) into logical
InputSplits, each of which is then assigned to an individualMapper. - Provide the
RecordReaderimplementation to be used to glean input records from the logicalInputSplitfor processing by theMapper.
The default behavior of file-based InputFormats, typically sub-classes of FileInputFormat, is to split the input into logical InputSplits based on the total size, in bytes, of the input files. However, the FileSystem blocksize of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via mapred.min.split.size.
Clearly, logical splits based on input-size is insufficient for many applications since record boundaries are to respected. In such cases, the application has to also implement a RecordReader on whom lies the responsibility to respect record-boundaries and present a record-oriented view of the logical InputSplit to the individual task.
2、RecordReader抽象类

The record reader breaks the data into key/value pairs for input to the Mapper.
3、hadoop提供的InputFormat
hadoop在org.apache.hadoop.mapreduce.lib.input包下提供了一些InputFormat的实现。hadoop默认使用TextInputFormat类处理输入。
4、hadoop提供的RecordReader
hadoop在org.apache.hadoop.mapreduce.lib.input包下也提供了一些RecordReader的实现。
五、MapReduce的输出

OutputFormat describes the output-specification for a Map-Reduce job.The Map-Reduce framework relies on the OutputFormat of the job to:
- Validate the output-specification of the job. For e.g. check that the output directory doesn't already exist.
- Provide the
RecordWriterimplementation to be used to write out the output files of the job. Output files are stored in aFileSystem.
2、RecordWriter抽象类

RecordWriter writes the output <key, value> pairs to an output file.
RecordWriter implementations write the job outputs to the FileSystem.
3、hadoop提供的OutputFormat
hadoop在org.apache.hadoop.mapreduce.lib.output包下提供了一些OutputFormat的实现。hadoop默认使用TextOutputFormat类处理输出。
4、hadoop提供的RecordWriter
在org.apache.hadoop.mapreduce.lib.input包下的OutputFormat的实现类(子类)将它们所需的RecordWriter定义为内部类,因此不存在单独实现的RecordWriter类。
六、MapReduce各阶段涉及到的类
P70-71
1、InputFormat类
2、Mapper类
3、Combiner类
4、Partitioner类
5、Reducer类
6、OutputFormat类
7、其他
七、详解Shuffle过程:http://langyu.iteye.com/blog/992916
map->shuffle->reduce
P60-64,例子P64-68
附:WEB接口的端口号配置:
mapred-default.xml
<property>
<name>mapred.job.tracker.http.address</name>
<value>0.0.0.0:50030</value>
<description>
The job tracker http server address and port the server will listen on.
If the port is 0 then the server will start on a free port.
</description>
</property>
hdfs-default.xml
<property>
<name>dfs.http.address</name>
<value>0.0.0.0:50070</value>
<description>
The address and the base port where the dfs namenode web ui will listen on.
If the port is 0 then the server will start on a free port.
</description>
</property>
MapReduce基础知识的更多相关文章
- 小记---------Hadoop的MapReduce基础知识
MapReduce是一种分布式计算模型,主要用于搜索领域,解决海量数据的计算问题 MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算. 两 ...
- 基于C#的MongoDB数据库开发应用(1)--MongoDB数据库的基础知识和使用
在花了不少时间研究学习了MongoDB数据库的相关知识,以及利用C#对MongoDB数据库的封装.测试应用后,决定花一些时间来总结一下最近的研究心得,把这个数据库的应用单独作为一个系列来介绍,希望从各 ...
- MongoDB基础知识 02
MongoDB基础知识 02 6 数据类型 6.1 null : 表示空值或者不存在的字段 {"x":null} 6.2 布尔型 : 布尔类型只有两个值true和false {&q ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- 最全的spark基础知识解答
原文:http://www.36dsj.com/archives/61155 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduc ...
- JAVA基础知识|lambda与stream
lambda与stream是java8中比较重要两个新特性,lambda表达式采用一种简洁的语法定义代码块,允许我们将行为传递到函数中.之前我们想将行为传递到函数中,仅有的选择是使用匿名内部类,现在我 ...
- 常见问题:MongoDB基础知识
常见问题:MongoDB基础知识 ·MongoDB支持哪些平台? ·MongoDB作为托管服务提供吗? ·集合(collection)与表(table)有何不同? ·如何创建数据库(database) ...
- Hive 这些基础知识,你忘记了吗?
Hive 其实是一个客户端,类似于navcat.plsql 这种,不同的是Hive 是读取 HDFS 上的数据,作为离线查询使用,离线就意味着速度很慢,有可能跑一个任务需要几个小时甚至更长时间都有可能 ...
- [源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并 ...
随机推荐
- Entity Framework Code Migration 新建、更新数据库
在Package Manager Console中执行 A:新建数据库: 1.Add-Migration init[名称](为挂起的Model变化添加迁移脚本) 2.Update-Database(将 ...
- 针对苹果最新审核要求为应用兼容IPv6
在WWDC2015上苹果宣布iOS9将支持纯IPv6的网络服务.2016年初开始所有提交到App Store的应用必须支持IPv6.为确保现有的应用是兼容的,我们需要注意下面几点. 不建议使用底层的网 ...
- JVM生产环境参数实例及分析[转]
java application项目(非web项目) 改进前: -Xms128m-Xmx128m-XX:NewSize=64m-XX:PermSize=64m-XX:+UseConcMarkSweep ...
- PAT 1010. 一元多项式求导 (25)
设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式:以与 ...
- 夯实基础之php学习-2提高篇
1,Jpgraph, 详见Php图形化jpgraph 2,文件系统 文件的操作步骤:打开文件->操作文件->关闭文件 打开文件fopen(filename,mode) 关闭文件fclose ...
- Android-完全退出当前应用程序的四种方法
Android程序有很多Activity,比如说主窗口A,调用了子窗口B,如果在B中直接finish(), 接下里显示的是A.在B中如何关闭整个Android应用程序呢?本人总结了几种比较简单的实现方 ...
- Linux 信号详解二(信号分类,信号处理,kill)
信号分类 信号分为可靠信号和不可靠信号 不可靠信号的缺点 ①:处理完信号,需要重新再注册信号:②信号可能丢失. Linux已经对缺点①做了优化,现在的不可靠问题主要指的是信号可能丢失 信号还可以分为实 ...
- Python2.7-异常和工具
来自<python学习手册第四版>第七部分,而且本书发布的时候3.1还未发布,所以针对本书的一些知识会有些滞后于python的版本,具体更多细节可以参考python的标准手册. 一.异常基 ...
- EF 相见恨晚的Attach方法
一个偶然的机会,让我注意了EF 的Attach方法,于是深入了解让我大吃一惊 在我所参与的项目中所有的更新操作与删除操作都是把原对象加载出来后,再做处理,然后再保存到数据库,这样的操作不缺点在于每一次 ...
- C8051逆向电阻屏:头儿拍脑袋说电阻屏IC好赚钱3块钱成本能卖20几块。,一个月不分昼夜逆向成功后头儿说电阻屏已经被市场淘汰请放弃治疗。
参考: 书籍,<圈圈教你玩USB> C8051F单片机快速入门:http://www.waveshare.net/Left_Column/C8051F_Application_Notes ...