零.说明:

本文的所有代码均可在 DML 找到,欢迎点星星。

注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已

一.引入:

CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了,把imagenet测试的准确度提高了非常多,一个是Alex的工作,然后最近好像Zeiler又有突破性的成果,可惜这些我都没看过,主要是imagenet的数据太大了,我根本没有可能跑得动,所以学习的积极性有些打折扣。不说那么多,还是先实现一个最基础的CNN再说吧:

二.实现:

好吧,基本是根据DeepLearnToolbox的结构按照 Notes on Convolutional Neural Networks 来写的,大家可以先看这里的代码讲解:【面向代码】学习
Deep Learning(三)Convolution Neural Network(CNN)

本来是想根据Notes那篇文章来写的,只是最后发现如果给subsampling层加上sigmoid之后整个结构就不收敛了~~~,我用numeric_grad_check检测发现梯度计算也是对的,不明所以~~~这份代码我也上传了(old),不过下面的代码最后就只能改成稍简化版的,貌似通常情况下CNN的pooling(subsampling)层也是没有sigmoid的,先这样吧,这个东西理解起来简单还是写了我两个下午……伤……

代码: DML/CNN/cnn.py

from __future__ import division
import numpy as np
import scipy as sp
from scipy.signal import convolve as conv
from dml.tool import sigmoid,expand,showimage
from numpy import rot90
'''
this algorithm have refered to the DeepLearnToolBox(https://github.com/rasmusbergpalm/DeepLearnToolbox)
also:[1]:"Notes on Convolutional Neural Networks" Jake Bouvrie 2006 - How to implement CNNs
I want to implement as [1] described,where the subsampling layer have sigmoid function
but finally it does not converge,but I can pass the gradcheck!!
(this version is dml/CNN/cnn.py.old ,if you can figure out what is wrong in the code,PLEASE LET ME KNOW)
at last I changed code back to simple version,delete the sigmoid in 's' layer
ps:this code in python is too slow!don't use it do anything except reading.
'''
class LayerC:
def __init__(self,types='i',out=0,scale=0,kernelsize=0):
self.types=types
self.a=None
self.b=None
self.d=None
if (types=='i'):
pass
elif (types=='c'):
self.out=out
self.kernelsize=kernelsize
self.k=None
elif (types=='s'):
self.scale=scale
self.Beta={}
self.dBeta={} class CNNC:
def __init__(self,X,y,layers,opts):
self.X=np.array(X)
self.y=np.array(y)
self.layers=layers
self.opts=opts
inputmap = 1
mapsize = np.array(self.X[0].shape) for i in range(len(self.layers)):
if self.layers[i].types=='s':
mapsize = mapsize / self.layers[i].scale
assert np.sum(np.floor(mapsize)== mapsize)==mapsize.size
self.layers[i].b={}
self.layers[i].db={}
for j in range(inputmap):
self.layers[i].b.setdefault(j,0)
self.layers[i].db.setdefault(j,0)
self.layers[i].Beta.setdefault(j,1)
self.layers[i].dBeta.setdefault(j,0.0)
pass
if self.layers[i].types=='c':
mapsize = mapsize - self.layers[i].kernelsize + 1
fan_out = self.layers[i].out*self.layers[i].kernelsize**2
self.layers[i].k={}
self.layers[i].dk={}
self.layers[i].b={}
self.layers[i].db={}
for j in range(self.layers[i].out): fan_in = inputmap*self.layers[i].kernelsize**2
for t in range(inputmap):
self.layers[i].k.setdefault(t,{})
self.layers[i].k[t].setdefault(j)
self.layers[i].k[t][j]=(np.random.rand(self.layers[i].kernelsize,self.layers[i].kernelsize)-
0.5)*2*np.sqrt(6/(fan_out+fan_in))
self.layers[i].dk.setdefault(t,{})
self.layers[i].dk[t].setdefault(j)
self.layers[i].dk[t][j]=np.zeros(self.layers[i].k[t][j].shape)
self.layers[i].b.setdefault(j,0)
self.layers[i].db.setdefault(j,0)
inputmap=self.layers[i].out
if self.layers[i].types=='i':
pass
fvnum = np.prod(mapsize)*inputmap;
onum = self.y.shape[0];
self.ffb=np.zeros((onum,1))
self.ffW=(np.random.rand(onum, fvnum)-0.5)*2*np.sqrt(6/(onum+fvnum))
def cnnff(self,x):
#print x
self.layers[0].a={}
self.layers[0].a.setdefault(0)
self.layers[0].a[0]=x.copy()
inputmap=1
n=len(self.layers) for l in range(1,n):
if self.layers[l].types=='s':
for j in range(inputmap): temp=np.ones((self.layers[l].scale,self.layers[l].scale))/(self.layers[l].scale**2)
z=conv(self.layers[l-1].a[j],np.array([temp]), 'valid')
z=np.array(z)[:,::self.layers[l].scale,::self.layers[l].scale] if self.layers[l].a==None:
self.layers[l].a={}
self.layers[l].a.setdefault(j)
self.layers[l].a[j] =z if self.layers[l].types=='c':
if self.layers[l].a==None:
self.layers[l].a={}
for j in range(self.layers[l].out): #for each outmaps
z = np.zeros(self.layers[l-1].a[0].shape - np.array([0,self.layers[l].kernelsize-1,self.layers[l].kernelsize-1]))
for i in range(inputmap): #cumulate from inputmaps
z+=conv(self.layers[l-1].a[i],np.array([self.layers[l].k[i][j]]),'valid')
self.layers[l].a.setdefault(j)
self.layers[l].a[j]=sigmoid(z+self.layers[l].b[j])
inputmap = self.layers[l].out self.fv=None
for j in range(len(self.layers[n-1].a)):
sa=self.layers[n-1].a[j].shape
p=self.layers[n-1].a[j].reshape(sa[0],sa[1]*sa[2]).copy()
if (self.fv==None):
self.fv=p
else:
self.fv=np.concatenate((self.fv,p),axis=1)
self.fv=self.fv.transpose()
self.o=sigmoid(np.dot(self.ffW,self.fv) + self.ffb) def cnnbp(self,y):
n=len(self.layers)
self.e=self.o-y
self.L=0.5*np.sum(self.e**2)/self.e.shape[1]
self.od=self.e*(self.o*(1-self.o)) self.fvd=np.dot(self.ffW.transpose(),self.od)
if self.layers[n-1].types=='c':
self.fvd=self.fvd*(self.fv*(1-self.fv))
sa=self.layers[n-1].a[0].shape
fvnum=sa[1]*sa[2]
for j in range(len(self.layers[n-1].a)):
if self.layers[n-1].d==None:
self.layers[n-1].d={}
self.layers[n-1].d.setdefault(j)
self.layers[n-1].d[j]=self.fvd[(j*fvnum):((j+1)*fvnum),:].transpose().reshape(sa[0],sa[1],sa[2]) for l in range(n-2,-1,-1):
if self.layers[l].types=='c':
for j in range(len(self.layers[l].a)):
if self.layers[l].d==None:
self.layers[l].d={}
self.layers[l].d.setdefault(j)
self.layers[l].d[j]=self.layers[l].a[j]*(1-self.layers[l].a[j])*
np.kron(self.layers[l+1].d[j],np.ones(( self.layers[l+1].scale,self.layers[l+1].scale))/(self.layers[l+1].scale**2)) elif self.layers[l].types=='s':
for j in range(len(self.layers[l].a)):
if self.layers[l].d==None:
self.layers[l].d={}
self.layers[l].d.setdefault(j)
z=np.zeros(self.layers[l].a[0].shape)
for i in range(len(self.layers[l+1].a)):
rotated=np.array([rot90(self.layers[l+1].k[j][i],2)])
z=z+conv(self.layers[l+1].d[i],rotated,'full')
self.layers[l].d[j]=z for l in range(1,n):
m=self.layers[l].d[0].shape[0]
if self.layers[l].types=='c':
for j in range(len(self.layers[l].a)):
for i in range(len(self.layers[l-1].a)):
#self.layers[l].dk[i][j]=rot90(conv(self.layers[l-1].a[i],rot90(self.layers[l].d[j],2),'valid'),2)
self.layers[l].dk[i][j]=self.layers[l].dk[i][j]*0
for t in range(self.layers[l].d[0].shape[0]):
self.layers[l].dk[i][j]+=rot90(conv(self.layers[l-1].a[i][t],rot90(self.layers[l].d[j][t],2),'valid'),2) self.layers[l].dk[i][j]=self.layers[l].dk[i][j]/m
self.layers[l].db[j]=np.sum(self.layers[l].d[j])/m
self.dffW=np.dot(self.od,self.fv.transpose())/self.od.shape[1]
self.dffb = np.mean(self.od,1).reshape(self.ffb.shape); def cnnapplygrads(self,alpha=0.1):
n=len(self.layers)
for l in range(1,n):
if self.layers[l].types=='c':
for j in range(len(self.layers[l].a)):
for i in range(len(self.layers[l-1].a)):
self.layers[l].k[i][j]-=alpha*self.layers[l].dk[i][j]
self.layers[l].b[j]-=alpha*self.layers[l].db[j]
pass self.ffW-=alpha*self.dffW
self.ffb-=alpha*self.dffb def train(self):
m=self.X.shape[0]
batchsize=self.opts['batchsize']
numbatches = m/batchsize
print numbatches
self.rL = []
for i in range(self.opts['numepochs']):
print 'the %d -th epoch is running'% (i+1)
kk=np.random.permutation(m)
for j in range(numbatches):
print 'the %d -th batch is running , totally %d batchs'% ((j+1),numbatches)
batch_x=self.X[kk[(j)*batchsize:(j+1)*batchsize],:,:].copy()
batch_y=self.y[:,kk[(j)*batchsize:(j+1)*batchsize]].copy()
self.cnnff(batch_x)
self.cnnbp(batch_y)
self.cnnapplygrads(alpha=self.opts['alpha']) if len(self.rL)==0:
self.rL.append(self.L)
else:
p=self.rL[len(self.rL)-1]
self.rL.append(p*0.99+0.1*self.L)
print self.L
def gradcheck(self,test_x,test_y):
#github上有这部分代码 def test(self,test_x,test_y):
self.cnnff(np.array(test_x))
p=self.o.argmax(axis=0)
bad= np.sum(p!=np.array(test_y).argmax(axis=0))
print p,np.array(test_y).argmax(axis=0)
print bad
print np.array(test_y).shape[1]
er=bad/np.array(test_y).shape[1]
print er
def pred(self,test_x):
self.cnnff(np.array(test_x))
p=self.o.argmax(axis=0)
return p

三.测试

因为python跑这个实在是太慢了,主要原因我觉得是convolution函数(我用的scipy.signal.convolve)比matlab里慢太多了,所以跑MNIST以50为一个patch跑SGD一轮要二三十分钟,所以建议不要使用这份代码,你可以去用DeepLearnToolbox比这都快……

使用代码来测试:test/CNN_test/test_cnn.py

layers=[LayerC('i'),
LayerC('c',out=6,kernelsize=5),
LayerC('s',scale=2),
LayerC('c',out=12,kernelsize=5),
LayerC('s',scale=2)]
opts={}
opts['batchsize']=40
opts['numepochs']=1
opts['alpha']=1 a=CNNC(X,groundTruth,layers,opts)
#a.gradcheck(test_x[1:3,:,:],test_groundTruth[:,1:3])
a.train()
a.test(test_x,test_groundTruth)

这是一轮的结果,89.99%的准确度,应该还是正常的:

卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现的更多相关文章

  1. 卷积神经网络(Convolutional Neural Networks)CNN

     申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural ...

  2. 小白也能弄懂的卷积神经网络(Convolutional Neural Networks )

    本系列主要是讲解卷积神经网络 - Convolutional Neural Networks 的系列知识,本系列主要帮助大家入门,我相信这是所有入门深度学习的初学者都必须学习的知识,这里会用更加直接和 ...

  3. 卷积神经网络LeNet Convolutional Neural Networks (LeNet)

    Note This section assumes the reader has already read through Classifying MNIST digits using Logisti ...

  4. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  5. 【转载】 卷积神经网络(Convolutional Neural Network,CNN)

    作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...

  6. “卷积神经网络(Convolutional Neural Network,CNN)”之问

    目录 Q1:CNN 中的全连接层为什么可以看作是使用卷积核遍历整个输入区域的卷积操作? Q2:1×1 的卷积核(filter)怎么理解? Q3:什么是感受野(Receptive field)? Q4: ...

  7. 卷积神经网络CNN学习笔记

    CNN的基本结构包括两层: 特征提取层:每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征.一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来: 特征映射层:网络的每个计算层由多 ...

  8. paper 162:卷积神经网络(CNN)解析

    卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...

  9. 卷积神经网络CNN的原理(一)---基本概念

    什么是卷积神经网络呢?这个的确是比较难搞懂的概念,特别是一听到神经网络,大家脑海中第一个就会想到复杂的生物学,让人不寒而栗,那么复杂啊.卷积神经网络是做什么用的呢?它到底是一个什么东东呢? 卷积神经网 ...

随机推荐

  1. CodeForces 670D1 暴力或二分

    今天,开博客,,,激动,第一次啊 嗯,,先来发水题纪念一下 D1. Magic Powder - 1   This problem is given in two versions that diff ...

  2. Iterator用法

    <% List<Emp> all=DAOFactory.getIEmpDAOInstance().findAll(keyWord); Itrator<Emp> iter= ...

  3. [LintCode] Sort Integers II 整数排序之二

    Given an integer array, sort it in ascending order. Use quick sort, merge sort, heap sort or any O(n ...

  4. 行业集中度(Concentration Ratio)

    行业集中度是决定市场结构最基本.最重要的因素,集中体现了市场的竞争和垄断程度,经常使用的集中度计量指标有:行业集中率(CRn指数).赫尔芬达尔—赫希曼指数(Herfindahl-HirschmanIn ...

  5. 利用background-attachment做视差滚动效果

    视差滚动(Parallax Scrolling)是指让多层背景以不同的速度移动,形成立体的运动效果,带来非常出色的视觉体验.作为今年网页设计的热点趋势,越来越多的网站应用了这项技术. 不明白的可以先看 ...

  6. ob_clean()

    我在本地写的系统,部署到虚拟机上的时候,验证码出现问题不显示.加上这个函数之后,验证码出现了.具体的该学习去了.

  7. 用外部表的方式查询当天数据库alert日志文件

    1环境准备 2查询ORA-开头的错误

  8. javascript阻止事件冒泡的兼容写法及其相关示例

    //阻止事件冒泡的兼容写法 function stopBubble(e){ //如果提供了事件对象,则是一个非IE浏览器 if(e && e.stopPropagation) //因此 ...

  9. js 检查是否为手机端

    let isMobile = function(){ let userAgentInfo = navigator.userAgent; let Agents = new Array("And ...

  10. DEDECMS里面DEDE函数解析

    下面来解说下DEDECMS织梦CMS模板里面的函数说明 在文件include/inc_function.php里面 GetCurUrl() 获贴切前的脚本的URL GetAlabNum($str) 把 ...