tyvj1098[luogu 2365]任务安排 batch
题目描述
N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。
例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。
输入输出格式
输入格式:
第一行是N(1<=N<=5000)。
第二行是S(0<=S<=50)。
下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。
输出格式:
一个数,最小的总费用。
输入输出样例
题解:
推导递推式的过程中会发现,分组时的开机时间s会产生后效性
设:
※f[i]表示前i个任务的最小费用
※w[i]表示前i个任务费用系数的前缀和
※t[i]表示前i个任务需要单调时间的前缀和
为了解决后效性问题,在循环j-i时(表示j-i分一组),需要将对后面所有任务产生的部分费用一起累加
于是可以得到状态转移方程
f[i]=max{f[j-1]+s*(w[n]-w[j-1])+(w[i]-w[j-1])*t[i]}
空间复杂度O(N)
时间复杂度O(N*N)
#include<iostream>
using namespace std;
const int N=;
int n,s,t[N],w[N],f[N];
inline int dmin(int x,int y){
if(x<y)
return x;
return y;
}
int main(){
cin>>n>>s;
for(int i=;i<=n;i++)
cin>>t[i]>>w[i],
t[i]+=t[i-],
w[i]+=w[i-];
for(int i=;i<=n;i++){
f[i]=0x7fffffff;
for(int j=;j<=i;j++)
f[i]=dmin(f[i],f[j-]+s*(w[n]-w[j-])+(w[i]-w[j-])*t[i]);
}
cout<<f[n]<<endl;
return ;
}
tyvj1098[luogu 2365]任务安排 batch的更多相关文章
- [Luogu 1160] 队列安排
Luogu 1160 队列安排 链表H2O H2O H2O模板. 太久不写链表,忘干净了,竟调了半个晚上. 保留备用. #include <cstdio> #include <cst ...
- luogu P1160 队列安排
二次联通门 :luogu P1160 队列安排 /* luogu P1160 队列安排 链表 手动模拟一下就好了... */ #include <cstdio> #define Max 5 ...
- luogu P2365 任务安排(FJOI2019 batch)
洛谷传送门 FJOI 日常原题 $2333$(似乎还不如 SDOI2012 任务安排 $2333$) 显然考虑 $dp$,这个是经典的把未来的代价先计算的 $dp$,然后才是斜率优化 一开始想状态时一 ...
- 【luogu P2071 座位安排】 题解
题目链接:https://www.luogu.org/problemnew/show/P2071#sub 邻接表 + 匈牙利 把之前的邻接矩阵匈牙利变成邻接表 要不然存不下... code: #inc ...
- Luogu P1160队列安排【链表/老文搬家】By cellur925
原文发表于2018-04-15 08:15:09,我的luogu博客qwq. 看到题以后,要求维护一个可在任意位置修改添加删除元素的序列,那么显然我们可以用到链表. 然而本蒟蒻不久前刚刚学会链表.链表 ...
- P2365 任务安排 batch 动态规划
batch ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比时间限制:1 s 内存限制:128 MB 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不 ...
- luogu P2071 座位安排
这个题可以被分为两部分 1.匈牙利算法(板子) 2.邻接表存图(好像这不能称为第二部分) 每一排能坐两个人,那就把一排拆成两个点, 用匈牙利算法求最大匹配 每个人都只想坐两排,说明每个人只会连四条边 ...
- luogu P2365 任务安排
嘟嘟嘟 如果常规dp,\(dp[i][j]\)表示前\(i\)个任务分\(j\)组,得到 \[dp[i][j] = min _ {k = 0} ^ {i - 1} (dp[k][j - 1] + (s ...
- P2365 任务安排 / [FJOI2019]batch(斜率优化dp)
P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先 ...
随机推荐
- AJAX跨域访问(从Tomcat8到Apache/Nginx)
1.在Tomcat的Root目录下放入如下的文件 apache-tomcat-8.0.12X64\webapps\ROOT clientaccesspolicy.xml文件 <?xml vers ...
- <转>DevExpress使用经验总结
DevExpress是一个比较有名的界面控件套件,提供了一系列的界面控件套件的DotNet界面控件.本文主要介绍我在使用 DevExpress控件过程中,遇到或者发现的一些问题解决方案,或者也可以所示 ...
- Android studio 如何查看模拟器里面的文件
1.查看SD卡里面的内容 2.看数据库
- iOS 从应用中跳转至系统设置页面里的多种设置页面
我们在开发app过程中很多时候会需要设置系统权限,这时就需要在应用中跳转至系统设置页面权限设置页面,以下是自己结合网上的资料总结的一些经验: 直接从应用中跳转至系统设置中这个应用的权限设置页面 NSU ...
- 安卓--shape简单使用
shape 先看下,系统自带的EditText和Button的外形 下面看加了shape后的效果 简单点讲,shape可以为组件加上背景边框,圆角之类的可以配合selector使用 shapeXXX. ...
- UI控件闪灯
做出点一个控件然后他和他上下左右的4个控件一起变色. #import "ViewController.h" @interface ViewController () @end @i ...
- NPOI对Excel的操作(Sheet转DataTable、List<T>)
通过NPOI对Excel进行操作,这里主要是读取的操作.封装到ExcelHelper操作类中. 1 using System.Collections.Generic; 2 using NPOI.HSS ...
- teiid入门
teiid,是jboss组件中进行数据虚拟化的部件(data virtualization).但是对teiid的介绍比较少,这里记录一下我的学习过程. 一.编译安装teiid teiid的安装,可以选 ...
- [css]我要用css画幅画(一)
几年前开始就一直想用css画幅画. 今天才真正开始, 从简单的开始. 作为一个工作压力那么大的程序员,我首先要画一个太阳. html如下: <!DOCTYPE html> <html ...
- 每日Scrum(2)
今天是冲刺的第二天,小组主要做了界面的美化,加入了软件的开始动画,以及学校景点的美图介绍: 主要的问题在于除了开始界面,进入软件之后还是有待改进,功能的呈现有待加强.