Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组
George is a cat, so he loves playing very much.
Vitaly put n cards in a row in front of George. Each card has one integer written on it. All cards had distinct numbers written on them. Let's number the cards from the left to the right with integers from 1 to n. Then the i-th card from the left contains number pi(1 ≤ pi ≤ n).
Vitaly wants the row to have exactly k cards left. He also wants the i-th card from left to have number bi written on it. Vitaly gave a task to George, to get the required sequence of cards using the remove operation n - k times.
In one remove operation George can choose w (1 ≤ w; w is not greater than the current number of cards in the row) contiguous cards (contiguous subsegment of cards). Let's denote the numbers written on these card as x1, x2, ..., xw (from the left to the right). After that, George can remove the card xi, such that xi ≤ xj for each j (1 ≤ j ≤ w). After the described operation George gets w pieces of sausage.
George wondered: what maximum number of pieces of sausage will he get in total if he reaches his goal and acts optimally well? Help George, find an answer to his question!
The first line contains integers n and k (1 ≤ k ≤ n ≤ 106) — the initial and the final number of cards.
The second line contains n distinct space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the initial row of cards.
The third line contains k space-separated integers b1, b2, ..., bk — the row of cards that you need to get. It is guaranteed that it's possible to obtain the given row by using the remove operation for n - k times.
Print a single integer — the maximum number of pieces of sausage that George can get if he acts optimally well.
3 2
2 1 3
1 3
1
也就是尽量重复使用那些必须删除的数
那么 从小到大删除就好了
如何计算答案?
从小到大枚举,
对于必须保留的数,将其位置插入set
对于必须删除的数,查找当前数i的位置在set中的前驱后继,表示答案的区间,
这个区间中可能有些数十被删除了的(比i小)那么 用一个树状数组或者线段树计算区间和即可。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<set>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e6+, M = 1e6, mod = 1e9+, inf = 2e9; int n,k,a[N],pos[N],x,vis[N];
LL ans = ;
int C[N];
void update(int x,int c) {
for(int i = x; i < N; i += i&(-i)) C[i] += c;
}
int ask(int x) {
int s = ;
for(int i = x; i; i -= i&(-i)) s+=C[i];
return s;
}
int main() {
scanf("%d%d",&n,&k);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]),pos[a[i]] = i;
for(int i = ; i <= n; ++i) update(i,);
for(int i = ; i <= k; ++i) scanf("%d",&x),vis[x] = ;
set<int > s;
s.insert(),s.insert(n+);
for(int i = ; i <= n; ++i) {
if(!vis[i]) {
int bef = *(--s.lower_bound(pos[i]));
int blc = *(s.lower_bound(pos[i]));
ans += ask(blc-) - ask(bef);
update(pos[i],-);
} else {
s.insert(pos[i]);
}
}
cout<<ans<<endl;
return ;
}
Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组的更多相关文章
- Codeforces Round #227 (Div. 2) E. George and Cards 线段树+set
题目链接: 题目 E. George and Cards time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 ...
- Codeforces Round #365 (Div. 2) D - Mishka and Interesting sum(离线树状数组)
http://codeforces.com/contest/703/problem/D 题意: 给出一行数,有m次查询,每次查询输出区间内出现次数为偶数次的数字的异或和. 思路: 这儿利用一下异或和的 ...
- Codeforces Round #261 (Div. 2) D. Pashmak and Parmida's problem (树状数组求逆序数 变形)
题目链接 题意:给出数组A,定义f(l,r,x)为A[]的下标l到r之间,等于x的元素数.i和j符合f(1,i,a[i])>f(j,n,a[j]),求i和j的种类数. 我们可以用map预处理出 ...
- Codeforces Round #263 (Div. 1) C. Appleman and a Sheet of Paper 树状数组暴力更新
C. Appleman and a Sheet of Paper Appleman has a very big sheet of paper. This sheet has a form of ...
- Codeforces Round #381 (Div. 2) D. Alyona and a tree dfs序+树状数组
D. Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #590 (Div. 3)【D题:维护26棵树状数组【好题】】
A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...
- Codeforces Round #348 (VK Cup 2016 Round 2, Div. 2 Edition) E. Little Artem and Time Machine 树状数组
E. Little Artem and Time Machine 题目连接: http://www.codeforces.com/contest/669/problem/E Description L ...
- 01背包 Codeforces Round #267 (Div. 2) C. George and Job
题目传送门 /* 题意:选择k个m长的区间,使得总和最大 01背包:dp[i][j] 表示在i的位置选或不选[i-m+1, i]这个区间,当它是第j个区间. 01背包思想,状态转移方程:dp[i][j ...
- Codeforces Round #267 (Div. 2) C. George and Job(DP)补题
Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...
随机推荐
- MVC Create
本文介绍如何在MVC里往数据库中插入新的记录. 这里用到的数据表如下: Employees Step 1: 在Control文件里加入method public ActionResult Create ...
- Appium+Robotframework实现Android应用的自动化测试-1:Appium在Windows中的安装
让我们开始在Windows中开始安装Appium吧,Appium在OS X中的具体安装后面的文章会介绍. 另外,官网上说先要装Node.js,还要装Apache Ant和Apache Maven,Gi ...
- CEF3开发者系列之JS与C++交互之一
JS与Native交互是相对于比较困难的技术,在学习这门技术之前,我们先了解下浏览器内核中的JS引擎与chromium内核的V8引擎相关知识.在浏览器应用中,JS与本地代码互相调用,得益于浏览器内核对 ...
- Unity3D 给模型偏移纹理
给模型偏移纹理 using UnityEngine; using System.Collections; [RequireComponent(typeof(Renderer))] public cla ...
- the XMLHttpRequest Object
Ajax的核心是XMLHttpRequest对象.XMLHttpRequest对象允许异步发送请求并且以文本的形式返回结果.发送什么样的请求(what),在服务器端怎样处理这个请求(how),返回什么 ...
- 22. javacript高级程序设计-高级技巧
1. 高级技巧 1.1 函数 l 可以使用惰性载入函数,将任何分支推迟到第一个调用函数的时候 l 函数绑定可以让你创建始终在指定环境中运行的函数,同时函数柯里化可以让你创建已经填写了某些参数的函数 l ...
- MySQL 四种事务隔离级的说明
很早之前写的文章,重新回顾和学习下: 按照SQL:1992 事务隔离级别,InnoDB默认是可重复读的(REPEATABLE READ).MySQL/InnoDB 提供SQL标准所描述的所有四个事务隔 ...
- SQL如何本地数据库连接服务器的数据库
当我们本地数据库的数据作为测试的时候,需要服务器上的数据,但是每次都远程服务器打开数据库查看数据是很麻烦的,那么我们如何让本地的数据库连接服务器上的数据库.前提是你本地的数据库的版本必须和服务器上的数 ...
- [Java 基础] 使用java.util.zip包压缩和解压缩文件
reference : http://www.open-open.com/lib/view/open1381641653833.html Java API中的import java.util.zip ...
- September 26th 2016 Week 40th Monday
The land didn't move, but moved. The sea wasn't still, yet was still. 大地止而亦行,大海动而亦静. Still waters ru ...