【GoLang】深入理解slice len cap什么算法? 参数传递有啥蹊跷?
先上结论
、内置append函数在现有数组的长度 < 时 cap 增长是翻倍的,再往上的增长率则是 1.25,至于为何后面会说。
、Go语言中channel,slice,map这三种类型的实现机制类似指针,所以可以直接传递,而不用取地址后传递指针。(注:若函数需改变slice的长度,则仍需要取地址传递指针)
、在函数内用append时,append会自动以倍增的方式扩展slice_2的容量,但是扩展也仅仅是函数内slice_2的长度和容量,slice_1的长度和容量是没变的,所以在函数外打印时看起来就是没变。
、当程序要求slice的容量超大并且需要频繁的更改slice的内容时,就不应该用slice,改用list更合适。
、Go 在 append 和 copy 方面的开销是可预知+可控的,应用上简单的调优有很好的效果。这个世界上没有免费的动态增长内存,各种实现方案都有设计权衡。
append新建对象,s2指向了新对象,函数退出新对象释放
原来的s1还是s1,append没有影响,但是s2修改的操作有影响,因为s2直接操作了s1的内存
前言
用过go语言的亲们都知道,slice(中文翻译为切片)在编程中经常用到,它代表变长的序列,序列中每个元素都有相同的类型,类似一个动态数组,利用append可以实现动态增长,利用slice的特性可以很容易的切割slice,它们是怎么实现这些特性的呢?现在我们来探究一下这些特性的本质是什么。
先了解一下slice的特性
定义一个slice:
s := []int{1,2,3,4,5}
fmt.Println(s) // [1 2 3 4 5]
一个slice类型一般写作[]T,其中T代表slice中元素的类型;slice的语法和数组很像,只是没有固定长度而已。
slice的扩容:
s := []int{1,2,3,4,5}
s = append(s, 6)
fmt.Println(s) // [1 2 3 4 5 6]
内置append函数在现有数组的长度 < 1024 时 cap 增长是翻倍的,再往上的增长率则是 1.25,至于为何后面会说。
slice的切割:
s := []int{1,2,3,4,5,6}
s1 := s[0:2]
fmt.Println(s1) // [1 2]
s2 := s[4:]
fmt.Println(s2) // [5 6]
s3 := s[:4]
fmt.Println(s3) // [1 2 3 4]
slice作为函数参数:
package main
import "fmt"
func main() {
slice_1 := []int{1, 2, 3, 4, 5}
fmt.Printf("main-->data:\t%#v\n", slice_1)
fmt.Printf("main-->len:\t%#v\n", len(slice_1))
fmt.Printf("main-->cap:\t%#v\n", cap(slice_1))
test1(slice_1)
fmt.Printf("main-->data:\t%#v\n", slice_1)
test2(&slice_1)
fmt.Printf("main-->data:\t%#v\n", slice_1)
}
func test1(slice_2 []int) {
slice_2[1] = 6666 // 函数外的slice确实有被修改
slice_2 = append(slice_2, 8888) // 函数外的不变
fmt.Printf("test1-->data:\t%#v\n", slice_2)
fmt.Printf("test1-->len:\t%#v\n", len(slice_2))
fmt.Printf("test1-->cap:\t%#v\n", cap(slice_2))
}
func test2(slice_2 *[]int) { // 这样才能修改函数外的slice
*slice_2 = append(*slice_2, 6666)
}
结果:
main-->data: []int{1, 2, 3, 4, 5}
main-->len: 5
main-->cap: 5
test1-->data: []int{1, 6666, 3, 4, 5, 8888}
test1-->len: 6
test1-->cap: 12
main-->data: []int{1, 6666, 3, 4, 5}
main-->data: []int{1, 6666, 3, 4, 5, 6666}
这里要注意注释的地方,为何slice作为值传递参数,函数外的slice也被更改了?为何在函数内append不能改变函数外的slice?要回答这些问题就得了解slice内部结构,详细请看下面.
slice的内部结构
其实slice在Go的运行时库中就是一个C语言动态数组的实现,在$GOROOT/src/pkg/runtime/runtime.h中可以看到它的定义:
struct Slice
{ // must not move anything
byte* array; // actual data
uintgo len; // number of elements
uintgo cap; // allocated number of elements
};
这个结构有3个字段,第一个字段表示array的指针,就是真实数据的指针(这个一定要注意),所以才经常说slice是数组的引用,第二个是表示slice的长度,第三个是表示slice的容量,注意:len和cap都不是指针。
现在就可以解释前面的例子slice作为函数参数提出的问题:
函数外的slice叫slice_1,函数的参数叫slice_2,当函数传递slice_1的时候,其实传入的确实是slice_1参数的复制,所以slice_2复制了slise_1,但要注意的是slice_2里存储的数组的指针,所以当在函数内更改数组内容时,函数外的slice_1的内容也改变了。在函数内用append时,append会自动以倍增的方式扩展slice_2的容量,但是扩展也仅仅是函数内slice_2的长度和容量,slice_1的长度和容量是没变的,所以在函数外打印时看起来就是没变。
append的运作机制
在对slice进行append等操作时,可能会造成slice的自动扩容。其扩容时的大小增长规则是:
如果新的slice大小是当前大小2倍以上,则大小增长为新大小
否则循环以下操作:如果当前slice大小小于1024,按每次2倍增长,否则每次按当前大小1/4增长。直到增长的大小超过或等于新大小。
append的实现只是简单的在内存中将旧slice复制给新slice
至于为何会这样,你要看一下golang的源码slice就知道了:
newcap := old.cap
if newcap+newcap < cap {
newcap = cap
} else {
for {
if old.len < 1024 {
newcap += newcap
} else {
newcap += newcap / 4
}
if newcap >= cap {
break
}
}
}
为何不用动态链表实现slice?
首先拷贝一断连续的内存是很快的,假如不想发生拷贝,也就是用动态链表,那你就没有连续内存。此时随机访问开销会是:链表 O(N), 2倍增长块链 O(LogN),二级表一个常数很大的O(1)。问题不仅是算法上开销,还有内存位置分散而对缓存高度不友好,这些问题i在连续内存方案里都是不存在的。除非你的应用是狂append然后只顺序读一次,否则优化写而牺牲读都完全不 make sense. 而就算你的应用是严格顺序读,缓存命中率也通常会让你的综合效率比拷贝换连续内存低。
对小 slice 来说,连续 append 的开销更多的不是在 memmove, 而是在分配一块新空间的 memory allocator 和之后的 gc 压力(这方面对链表更是不利)。所以,当你能大致知道所需的最大空间(在大部分时候都是的)时,在make的时候预留相应的 cap 就好。如果所需的最大空间很大而每次使用的空间量分布不确定,那你就要在浪费内存和耗 CPU 在 allocator + gc 上做权衡。
Go 在 append 和 copy 方面的开销是可预知+可控的,应用上简单的调优有很好的效果。这个世界上没有免费的动态增长内存,各种实现方案都有设计权衡。
什么时候该用slice?
在go语言中slice是很灵活的,大部分情况都能表现的很好,但也有特殊情况。
当程序要求slice的容量超大并且需要频繁的更改slice的内容时,就不应该用slice,改用list更合适。
参考资料:
https://segmentfault.com/a/1190000005812839?utm_source=tuicool&utm_medium=referral
http://www.cnblogs.com/howDo/archive/2013/04/25/GoLang-Array-Slice.html
golang list: https://golang.org/pkg/container/list/
【GoLang】深入理解slice len cap什么算法? 参数传递有啥蹊跷?的更多相关文章
- golang 数组以及slice切片
老虞学GoLang笔记-数组和切片 数组 Arrays 数组是内置(build-in)类型,是一组同类型数据的集合,它是值类型,通过从0开始的下标索引访问元素值.在初始化后长度是固定的,无法修改其 ...
- golang中,slice的几个易混淆点
slice在golang中是最常用的类型,一般可以把它作为数组使用,但是比数组要高效呀.不过,我感觉这个东西用的不好坑太多了.还是需要了解下他底层的实现 slice的结构定义 type slice s ...
- Golang中的Slice与数组
1.Golang中的数组 数组是一种具有固定长度的基本数据结构,在golang中与C语言一样数组一旦创建了它的长度就不允许改变,数组的空余位置用0填补,不允许数组越界. 数组的一些基本操作: 1.创建 ...
- golang的array/slice
相同点 由相同类型的元素组合构成 元素有序排列,0为第一个元素下标 基本使用方法相同 区别 array声明时需要指定容量大小,而且无法修改 slice可通过append增加元素,当容量不够时,会自动扩 ...
- 理解分布式一致性与Raft算法
理解分布式一致性与Raft算法 永远绕不开的CAP定理 出于可用性及负载方面考虑,一个分布式系统中数据必然不会只存在于一台机器,一致性简单地说就是分布式系统中的各个部分保持数据一致 但让数据保持一致往 ...
- golang ----array and slice
Go Slices: usage and internals Introduction Go's slice type provides a convenient and efficient mean ...
- golang学习之slice基本操作
slice的增删改查: //删除 func remove(slice []interface{}, i int) []interface{} { // copy(slice[i:], slice[i+ ...
- Golang 入门 : 切片(slice)
切片(slice)是 Golang 中一种比较特殊的数据结构,这种数据结构更便于使用和管理数据集合.切片是围绕动态数组的概念构建的,可以按需自动增长和缩小.切片的动态增长是通过内置函数 append( ...
- 转 Golang 入门 : 切片(slice)
https://www.jianshu.com/p/354fce23b4f0 切片(slice)是 Golang 中一种比较特殊的数据结构,这种数据结构更便于使用和管理数据集合.切片是围绕动态数组的概 ...
随机推荐
- HTML5 Web Form 新增属性和表单验证
<form>标签的基本属性 method属性:指定浏览器向服务器传送数据的方式,可选: action属性:设置服务器接受和处理表单数据的URL: enctype属性:制定表单数据在发送到服 ...
- Jbuilder 2008安装及破解
1.下载Jbuilder及破解包 2.安装: 1>点击install 2> 选择第一项: 3>同意协议: 4>选择安装目录 5>选择服务器 6>选择默认 7> ...
- coreos安装
cloud-config-bootstrap.sh #!/bin/bash cat > "cloud-config.yaml" <<EOF #cloud-conf ...
- Linq使用Group By 1
Linq使用Group By 1 1.简单形式: var q = from p in db.Products group p by p.CategoryID into g select g; 语句描述 ...
- 基于密度聚类的DBSCAN和kmeans算法比较
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性. 场景 一 假设有如下图的一组数据, 生成数据 ...
- CString::Mid成员函数
CString Mid( int nFirst, int nCount ) const; 此成员函数从此CString对象中提取一个长度为nCount个字符的子串,从nFirst(从零开始的索引)指定 ...
- ktouch移动端事件库
最近闲来无事,写了个移动端的事件库,代码贴在下面,大家勿拍. /** @version 1.0.0 @author gangli @deprecated 移动端触摸事件库 */ (function ( ...
- 2015年11月26日 Java基础系列(一)之String与StringBuffer与StringBuilder的区别
序,StringBuffer是线程安全的,StringBuilder是线程不安全的,但是StringBuilder操作速度快,因此在使用时要根据场景合理选择. StringBuffer和StringB ...
- sql是如何执行一个查询的!
引用自:http://rusanu.com/2013/08/01/understanding-how-sql-server-executes-a-query/ Understanding how SQ ...
- Hadoop第3周练习--Hadoop2.X编译安装和实验
作业题目 位系统下进行本地编译的安装方式 选2 (1) 能否给web监控界面加上安全机制,怎样实现?抓图过程 (2)模拟namenode崩溃,例如将name目录的内容全部删除,然后通过secondar ...