http://www.lydsy.com/JudgeOnline/problem.php?id=2705 (题目链接)

题意

  给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Solution

  完了完了,复杂度分析都不会了。。

  $${ans=\sum_{d|n}d*φ(n/d)}$$

细节

  注意n要开LL

代码

// bzoj2705
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define MOD 10000
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL n; LL phi(LL x) {
LL t=x;
for (LL i=2;i<=sqrt(x);i++) if (x%i==0) {
t=t/i*(i-1);
while (x%i==0) x/=i;
}
if (x>1) t=t/x*(x-1);
return t;
}
int main() {
scanf("%lld",&n);
LL ans=0;
for (int i=1;i<=sqrt(n);i++) if (n%i==0) {
ans+=i*phi(n/i);
if (n/i!=i) ans+=(n/i)*phi(i);
}
printf("%lld",ans);
return 0;
}

  

【bzoj2705】 SDOI2012—Longge的问题的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. [BZOJ2705][SDOI2012]Longge的问题 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...

  8. bzoj2705 [SDOI2012]Longge的问题——因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...

  9. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  10. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. ItemIndex

    ItemIndex一般是列表的一个属性,比如TCombobox和TListBox都有,表示当前选中的项(Item)的下标(Index),如果没有选中,那它是-1,所以一般判断TCombox或TList ...

  2. Markdown:认识&入门

    来源:http://sspai.com/25137 一.认识 Markdown 在刚才的导语里提到,Markdown 是一种用来写作的轻量级「标记语言」,它用简洁的语法代替排版,而不像一般我们用的字处 ...

  3. 基于JSch的Sftp工具类

    本Sftp工具类的API如下所示. 1)构造方法摘要 Sftp(String host, int port, int timeout, String username, String password ...

  4. 招聘 微软全球技术支持中心 sql server组

    微软亚太区全球技术支持中心(APGC CSS)是微软为个人用户.开发者.IT 专业人员到合作伙伴和企业级合作伙伴提供全方位.多元化的服务和技术支持的部门.一个优秀的SQL Server技术支持工程师应 ...

  5. 执行sudo时报错:effective uid is not 0

    http://jingyan.baidu.com/article/c45ad29cd83d4b051753e232.html     今天将 / 授权给了一个普通用户 导致一些问题. 启事: 操作前一 ...

  6. Linux 网络编程详解二(socket创建流程、多进程版)

    netstat -na | grep " --查看TCP/IP协议连接状态 //socket编程提高版--服务器 #include <stdio.h> #include < ...

  7. Java 集合与队列的插入、删除在并发下的性能比较

    这两天在写一个java多线程的爬虫,以广度优先爬取网页,设置两个缓存: 一个保存已经访问过的URL:vistedUrls 一个保存没有访问过的URL:unVistedUrls 需要爬取的数据量不大,对 ...

  8. lecture6-mini批量梯度训练及三个加速的方法

    Hinton的第6课,这一课中最后的那个rmsprop,关于它的资料,相对较少,差不多除了Hinton提出,没论文的样子,各位大大可以在这上面研究研究啊. 一.mini-批量梯度下降概述 这部分将介绍 ...

  9. JQuery实现资讯上下滚动悬停效果

    第一步:使用repeater绑定一个table. <table width="530" id="rollBar"> <asp:Repeater ...

  10. 准备.Net转前端开发-WPF界面框架那些事,UI快速实现法

    题外话 打开博客园,查看首页左栏的”推荐博客”,排名前五的博客分别是(此处非广告):Artech.小坦克.圣殿骑士.腾飞(Jesse).数据之巅.再看看它们博客的最新更新时间:Artech(2014- ...