题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

输出格式:

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。

输入输出样例

输入样例#1:

2 10
1
-2
1
输出样例#1:

1
1
输入样例#2:

2 10
2
-3
1
输出样例#2:

2
1
2
输入样例#3:

2 10
1
3
2
输出样例#3:

0

说明

30%:0<n<=2,|ai|<=100,an!=0,m<100

50%:0<n<=100,|ai|<=10^100,an!=0,m<100

70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000

100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000

直接计算无疑是不可能做到的。

将每一项的系数都模一个质数,若一个数是方程的解,那么在模的意义下它也是方程的解(但反过来不一定)。

为了解决这个“不一定”的问题,多选几个质数,若一个数在不同模的意义下都是方程的解,那么它有极大的几率就是原方程的解了。

↑如果素数选得不好,这题还是会WA。

↑所以这是道拼RP的题。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mod[]={,,,,,,,};
char s[][];
int n,m;
int num[][];
bool solve(int od,int x){
int i,j;
long long tmp=;
long long pw=;
for(i=;i<=n;++i){
// printf("%d %d\n",num[od][i],pw);
if(s[i][]=='-') tmp=(tmp-pw*num[od][i])%mod[od];
else tmp=(tmp+pw*num[od][i])%mod[od];
pw=pw*x%mod[od];
}
while(tmp<) tmp+=mod[od];
if(!tmp)return true;
return false;
}
int res[];
int ans[],act=;
int main(){
int i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<=n;++i)
scanf("%s",s[i]);
int len[];
for(i=;i<=n;++i)len[i]=strlen(s[i]);
for(k=;k<=;++k)
for(i=;i<=n;++i){
for(j=;j<len[i];++j){
if(s[i][j]=='-')continue;
num[k][i]=num[k][i]*+s[i][j]-'';
num[k][i]%=mod[k];
}
}
for(k=;k<=;++k)
for(i=;i<mod[k] && i<=m;++i){
if(!solve(k,i))continue;
++res[i];
for(j=i+mod[k];j<=m;j+=mod[k]){
// if(solve(k,j))
res[j]++;
}
}
for(i=;i<=m;++i)
if(res[i]==)ans[++act]=i;
printf("%d\n",act);
for(i=;i<=act;++i)printf("%d\n",ans[i]);
return ;
}

[NOIP2014] 提高组 洛谷P2312 解方程的更多相关文章

  1. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  2. [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址

    题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...

  3. 洛谷 P2312 解方程 解题报告

    P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...

  4. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  5. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  6. 洛谷 P2312 解方程

    题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...

  7. 2018.11.02 洛谷P2312 解方程(数论)

    传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...

  8. 洛谷P2312解方程

    传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...

  9. 洛谷P2312解方程题解

    题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...

随机推荐

  1. C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 独立子系统管理员功能实现

    1: 由于公司一次性要开发10多个子系统,每个子系统都需要有相关的业务部门进行对应.2: 若用集中式管理方式,每个业务部门人员变动,权限变动时,都需要早IT信息中心进行调整,影响工作效率.及时性.3: ...

  2. codevs1958 刺激

    难度等级:黄金 1958 刺激 题目描述 Description saffah的一个朋友S酷爱滑雪,并且追求刺激(exitement,由于刺激过度导致拼写都缺了个字母),喜欢忽高忽低的感觉.现在S拿到 ...

  3. Linux操作系统下三种配置环境变量的方法

    现在使用linux的朋友越来越多了,在linux下做开发首先就是需要配置环境变量,下面以配置java环境变量为例介绍三种配置环境变量的方法. 1.修改/etc/profile文件 如果你的计算机仅仅作 ...

  4. 127.0.0.1、0.0.0.0和本机IP地址的区别和使用

    一.表面上的区别如下: 首先假设本机有多个网卡:eth0 :192.168.0.1       eth1:192.168.1.1     lo: 127.0.0.1 0.0.0.0 不能ping通,代 ...

  5. scala 学习笔记(06) OOP(下)多重继承 及 AOP

    一.多继承 上篇trait中,已经看到了其用法十分灵活,可以借此实现类似"多重继承"的效果,语法格式为: class/trait A extends B with C with D ...

  6. sleep和wait的区别有:

    sleep和wait的区别有: 1,这两个方法来自不同的类分别是Thread和Object 2,最主要是sleep方法没有释放锁,而wait方法释放了锁,使得敏感词线程可以使用同步控制块或者方法. 3 ...

  7. 2015-2016-2 《Java程序设计》项目小组博客

    2015-2016-2 <Java程序设计>项目小组博客 1451 完+美 java项目 守望先疯 JavaGroup 07_10_20_22 FromBottomToTop L.G.Su ...

  8. DataTrigger 绑定枚举

    在触发器中绑定枚举类型: <ControlTemplate.Triggers> <DataTrigger Binding="{Binding CheckStateEnum} ...

  9. 熟悉css/css3颜色属性

    颜色属性无处不在.字体要用颜色,背景可以有颜色,粒子特效更是离不开颜色.本文参考了一些资料简单总结下以备日后查阅. css中颜色的定义方式: 十六进制色 RGB & RGBA HSL & ...

  10. Chrome 监听 console 打开

    这个算是 Chrome only 其他的我没测试,也不想测试.因为我的控制台脚本仅仅在 Chrome 下加载. 如果你需要全平台,那么这肯定不是你需要的结果. 需求 其实我很早就想折腾这个了,但是,, ...