[NOIP2014] 提高组 洛谷P2312 解方程
题目描述
已知多项式方程:
a0+a1x+a2x^2+..+anx^n=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入输出格式
输入格式:
输入文件名为equation .in。
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式:
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入输出样例
2 10
1
-2
1
1
1
2 10
2
-3
1
2
1
2
2 10
1
3
2
0
说明
30%:0<n<=2,|ai|<=100,an!=0,m<100
50%:0<n<=100,|ai|<=10^100,an!=0,m<100
70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000
100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000
直接计算无疑是不可能做到的。
将每一项的系数都模一个质数,若一个数是方程的解,那么在模的意义下它也是方程的解(但反过来不一定)。
为了解决这个“不一定”的问题,多选几个质数,若一个数在不同模的意义下都是方程的解,那么它有极大的几率就是原方程的解了。
↑如果素数选得不好,这题还是会WA。
↑所以这是道拼RP的题。
/*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mod[]={,,,,,,,};
char s[][];
int n,m;
int num[][];
bool solve(int od,int x){
int i,j;
long long tmp=;
long long pw=;
for(i=;i<=n;++i){
// printf("%d %d\n",num[od][i],pw);
if(s[i][]=='-') tmp=(tmp-pw*num[od][i])%mod[od];
else tmp=(tmp+pw*num[od][i])%mod[od];
pw=pw*x%mod[od];
}
while(tmp<) tmp+=mod[od];
if(!tmp)return true;
return false;
}
int res[];
int ans[],act=;
int main(){
int i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<=n;++i)
scanf("%s",s[i]);
int len[];
for(i=;i<=n;++i)len[i]=strlen(s[i]);
for(k=;k<=;++k)
for(i=;i<=n;++i){
for(j=;j<len[i];++j){
if(s[i][j]=='-')continue;
num[k][i]=num[k][i]*+s[i][j]-'';
num[k][i]%=mod[k];
}
}
for(k=;k<=;++k)
for(i=;i<mod[k] && i<=m;++i){
if(!solve(k,i))continue;
++res[i];
for(j=i+mod[k];j<=m;j+=mod[k]){
// if(solve(k,j))
res[j]++;
}
}
for(i=;i<=m;++i)
if(res[i]==)ans[++act]=i;
printf("%d\n",act);
for(i=;i<=act;++i)printf("%d\n",ans[i]);
return ;
}
[NOIP2014] 提高组 洛谷P2312 解方程的更多相关文章
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址
题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 洛谷 P2312 解方程
题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...
- 2018.11.02 洛谷P2312 解方程(数论)
传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...
- 洛谷P2312解方程
传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...
- 洛谷P2312解方程题解
题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...
随机推荐
- 利用Weblogic的iisproxy、iisforward插件实现IIS转发
默认情况下,IIS只能提供http重定向功能,而无法满足转发需求. 举例:http://localhost/app1 利用http重定向到 http://www.abc.com/app1 访问 htt ...
- weblogic 10.x 上开发restful服务
之前已经学习过 利用JAX-RS快速开发RESTful 服务,当时是jboss环境,如果原封不动的迁移到weblogic 10.x 版本,会杯具的发现应用启动失败,需要做些小调整: 项目结构如下: 需 ...
- 直流调速系统Modelica基本模型
为了便于在OpenModelica进行仿真,形成一个完整的仿真模型,没有使用第三方的库,参照了DrModelica的例程,按照Modelica库的开源模型定义了所用的基本元件模型. 首先给出一些基本类 ...
- JavaScript精要
写在开篇之前 这个系列都文章算是我最近研究了JavaScript(以后简称js)大半个月的一点心得吧.记得以前看过罗小平的一本书叫<Delphi精要>,我也就姑且起名叫<JavaSc ...
- 订餐系统之定时器Timer不定时
经过几天漫长的问题分析.处理.测试.验证,定时器Timer终于定时了,于是开始了这篇文章,希望对还在纠结于“定时器Timer不定时”的同学有所帮助,现在的方案,在系统日志中会有警告,如果您有更好的方案 ...
- 使用 Socket 通信实现 FTP 客户端程序(来自IBM)
FTP 客户端如 FlashFXP,File Zilla 被广泛应用,原理上都是用底层的 Socket 来实现.FTP 客户端与服务器端进行数据交换必须建立两个套接字,一个作为命令通道,一个作为数据通 ...
- Rectangles Area Sum
#include<iostream> #include<stdio.h> #include<math.h> #include<string.h> #in ...
- Linux配置VNC实现远程图形化操纵
问题描述 有些时候需要用到图形化,其实可以通过其他途径实现.但是懒惰的就喜欢VNC,总的老说都是需要图形组件的 问题解决 在Centos测试 一.图形化的Linux 01.安装 rpm ivh vn ...
- 天气预报API获取
1.citycode: http://mobile.weather.com.cn/js/citylist.xml http://files.cnblogs.com/files/ys-wuhan/cit ...
- Android PNG透明图片转JPG格式背景变黑
Android PNG透明图片转JPG格式背景变黑 在上传图片是,需要把PNG格式转换成JPG格式的,但是在遇上透明背景时,转过来就变成黑色底图了! 原因是PNG支持透明图而 JPG格式不支持透明底 ...