题意:有n只猫咪,开始时每只猫咪有花生0颗,现有一组操作,由下面三个中的k个操作组成:
        1. g i 给i只猫咪一颗花生米
        2. e i 让第i只猫咪吃掉它拥有的所有花生米
        3. s i j 将猫咪i与猫咪j的拥有的花生米交换
        现将上述一组操作做m次后,问每只猫咪有多少颗花生?

sol: 可参考Matrix67《十个利用矩阵乘法解决的经典题目》

定义初始矩阵A = [1 0 0 0],0号元素固定为1,1~n分别为对应的猫所拥有的花生数。
              对于第一种操作g i,我们在单位矩阵基础上使Mat[0][i]变为1,例如g 1:
              1 1 0 0
              0 1 0 0
              0 0 1 0
              0 0 0 1,显然[1 0 0 0]*Mat = [1 1 0 0]
              对于第二种操作e i,我们在单位矩阵基础使Mat[i][i] = 0,例如e 2:
              1 0 0 0
              0 1 0 0
              0 0 0 0
              0 0 0 1, 显然[1 2 3 4]*Mat = [1 2 0 4]
              对于第三种操作s i j,我们在单位矩阵基础上使第i列与第j互换,例如s 1 2:
              1 0 0 0
              0 0 0 1
              0 0 1 0
              0 1 0 0,显然[1 2 0 4]*Mat = [1 4 0 2]
              现在,对于每一个操作我们都可以得到一个转置矩阵,把k个操作的矩阵相乘我们可以得到一个新的转置矩阵T。
              A * T 表示我们经过一组操作,类似我们可以得到经过m组操作的矩阵为 A * T ^ m,最终矩阵的[0][1~n]即为答案。

PS:方法二:
              我们还是以单位矩阵为基础:
              对于第一种操作g i,我们使Mat[0][i] = Mat[0][i] + 1;
              对于第二种操作e i,我们使矩阵的第i列清零;
              对于第三种操作s i j,我们使第i列与第j列互换。
              这样实现的话,我们始终在处理一个矩阵,免去构造k个矩阵的麻烦。

POJ3735 矩阵的更多相关文章

  1. xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)

    题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示  i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...

  2. Training little cats(poj3735,矩阵快速幂)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10737   Accepted:  ...

  3. poj3735—Training little cats(特殊操作转化为矩阵操作)

    题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...

  4. POJ3735【矩阵快速幂】

    逛了一圈...觉得这篇讲的比较清楚:传送门~ 简要概括: 1.线性代数的知识,单位矩阵的利用:(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了): 2.然后构造好矩阵以后,直接做M次乘积运 ...

  5. [poj3735] Training little cats_矩乘快速幂

    Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...

  6. ACM之路(18)—— 矩阵

    矩阵是干什么的呢?一句话来说就是,知道相邻两个函数的递推关系和第一个数,让你递推到第n个数.显然,如果n很大,那么一个一个递推过去是会超时的.所以矩阵就是用来解决这种快速递推的问题的. 比方说斐波那契 ...

  7. C语言 · 矩阵乘法 · 算法训练

    问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...

  8. 获取Canvas当前坐标系矩阵

    前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...

  9. CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换

    CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可 ...

随机推荐

  1. git 找回丢失的commit

    From : http://dmouse.iteye.com/blog/1797267 git 的错误操作,导致丢失了重要的commit,真是痛不欲生: 最后通过git神器终于找回了丢失的commit ...

  2. java:如何用代码控制H2 Database启动

    1.纯手动start/stop package com.cnblogs.yjmyzz.h2; import java.sql.Connection; import java.sql.DriverMan ...

  3. Hibernate大福利 下载链接

    正在学马士兵Hibernate的同学来看这里,这里提供了他视频里需要的JAR包,请尽情下载,给好评喔. 一.Hibernate 3.3.2 核心JAR包 http://pan.baidu.com/s/ ...

  4. c++虚函数注意事项

    >在基类方法声明中使用关键字virtual,可以使该方法在基类及所有的派生类中是虚的 >如果使用指向对象的引用或指针来调用虚方法,程序将使用对象类型定义的方法,而不使用为引用或指针类型定义 ...

  5. opencv8-GPU之相似性计算

    Opencv支持GPU计算,并且包含成一个gpu类用来方便调用,所以不需要去加上什么__global__什么的很方便,不过同时这个类还是有不足的,待opencv小组的更新和完善. 这里先介绍在之前的& ...

  6. jQuery学习笔记(四):attr()与prop()的区别

    这一节针对attr()与prop()之间的区别进行学习. 先看看官方文档是如何解释两者之间功能差异的: attr() Get the value of an attribute for the fir ...

  7. jQuery经典学习笔记

    1.层次选择器: $("div> span") 获取div下的span元素 $(".one + div") 获取class为one的下一个div 2)过滤 ...

  8. Matlab绘图详解

    Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...

  9. redis的主从复制,读写分离,主从切换

    当数据量变得庞大的时候,读写分离还是很有必要的.同时避免一个redis服务宕机,导致应用宕机的情况,我们启用sentinel(哨兵)服务,实现主从切换的功能. redis提供了一个master,多个s ...

  10. 把时间转成适合符合日常习惯的格式【js】

    假设现在是7月30日12点,我们可以说今天12点,意思也非常明确. 我们习惯说昨天12点,而不习惯说29号12点. 我们习惯说周一12点,而不习惯说28号12点,这样不用翻日历看今天是几号. so,上 ...